791 research outputs found

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Enzymatic hydrophobic modification of jute fibers via grafting to reinforce composites

    Get PDF
    Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.This work was financially supported by the National Natural Science Foundation of China (51173071), the Program for New Century Excellent Talents in University (NCET-12-0883), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26) the Fundamental Research Funds for the Central Universities (JUSRP51312B, JUSRP51505), and the Graduate Student Innovation Plan of Jiangsu Province of China (SJLX_0527)

    In situ edge engineering in two-dimensional transition metal dichalcogenides

    Get PDF
    Exerting synthetic control over the edge structure and chemistry of two-dimensional (2D) materials is of critical importance to direct the magnetic, optical, electrical, and catalytic properties for specific applications. Here, we directly image the edge evolution of pores in Mo1-xWxSe2 monolayers via atomic-resolution in situ scanning transmission electron microscopy (STEM) and demonstrate that these edges can be structurally transformed to theoretically predicted metastable atomic configurations by thermal and chemical driving forces. Density functional theory calculations and ab initio molecular dynamics simulations explain the observed thermally induced structural evolution and exceptional stability of the four most commonly observed edges based on changing chemical potential during thermal annealing. The coupling of modeling and in situ STEM imaging in changing chemical environments demonstrated here provides a pathway for the predictive and controlled atomic scale manipulation of matter for the directed synthesis of edge configurations in Mo-1_xWxSe2 to achieve desired functionality

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Modeling risk factors and confounding effects in stroke

    Get PDF

    Search for high-mass dilepton resonances in pp collisions at s√=8  TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3  fb−1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E6 gauge group, Z∗ bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson

    Measurement of long-range pseudorapidity correlations and azimuthal harmonics in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Measurements of two-particle correlation functions and the first five azimuthal harmonics, v1 to v5, are presented, using 28 nb−1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √sNN=5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|Δϕ|2π/3) over the transverse momentum range 0.44 GeV. The v2(pT), v3(pT), and v4(pT) are compared to the vn coefficients in Pb+Pb collisions at √sNN=2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average pT of particles produced in the two collision systems

    Addendum to ‘measurement of the tt̄ production cross-section using eμ events with b-tagged jets in pp collisions at √s= 7 and 8 TeV with the ATLAS detector’

    Get PDF
    The ATLAS measurement of the inclusive top quark pair (tt̄) cross-section σtt̄ in proton–proton collisions at √s=8 TeV has been updated using the final 2012 luminosity calibration. The updated cross-section result is: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity and of the LHC beam energy. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. The measurement of the ratio of tt̄ cross-sections at √s=8 TeV and √s=7 TeV, and the √s=8 TeV fiducial measurement corresponding to the experimental acceptance of the leptons, have also been updated. The most precise measurement of the tt̄ cross-section (σtt̄) in proton–proton collisions at √s=8 TeV from the ATLAS Collaboration was made using events with an opposite-charge electron–muon pair and one or two b-tagged jets [1], and used a preliminary calibration of the integrated luminosity. The luminosity calibration has been finalised since [2] with a total uncertainty of 1.9%, corresponding to a substantial improvement on the previous uncertainty of 2.8%. Since the uncertainty on the integrated luminosity contributed 3.1% of the total 4.3% uncertainty on the σtt¯ measurement reported in [1], a significant improvement in the measurement is possible by using the new luminosity calibration, as documented in this Addendum. The new calibration corresponds to an integrated luminosity of 20.2 fb−¹ for the √s=8 TeV sample, a decrease of 0.2%. The cross-section was recomputed taking into account the effects on both the conversion of the tt¯ event yield to a cross-section, and the background estimates, giving a result of: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity, and of the LHC beam energy, giving a total uncertainty of 8.8 pb (3.6 %). The result is consistent with the theoretical prediction of 252.9−14.5+13.3 pb, calculated at next-to-next-to-leading-order with next-to-next-to-leading-logarithmic soft gluon terms with the top++ 2.0 program [3] as discussed in detail in Ref. [1]. The updated value of the ratio of cross-sections Rtt¯=σtt¯(8 TeV)/σtt¯(7 TeV) is: Rtt¯=1.328±0.024±0.015±0.038±0.001, with uncertainties defined as above, adding in quadrature to a total of 0.047. The largest uncertainty comes from the uncertainties on the integrated luminosities, considered to be uncorrelated between the √s=7 TeV and √s=8 TeV datasets. This result is 2.1σ below the expectation of 1.430±0.013 calculated from top++ 2.0 as discussed in Ref. [1]. The updated fiducial cross-sections, for a tt¯ decay producing an eμ pair within a given fiducial region, are shown in Table 1, updating Table 5 of Ref. [1]. The results are given both for the analysis requirements of pT>25GeV and |η|30GeV and |η|<2.4. They are given separately for the two cases where events with either one or both leptons coming from t→W→τ→ℓ rather than the direct decay t→W→ℓ(ℓ=e or μ) are included, or where the contributions involving τ decays are subtracted. The results shown for the √s=7 TeV data sample are unchanged with respect to those in Ref. [1]. The results for the top quark pole mass and limits on light supersymmetric top squarks presented in Ref. [1] are derived from √s=7 TeV and √s=8 TeV cross-section measurements taken together, and would be only slightly improved by the luminosity update described here
    corecore