15 research outputs found

    The social geography of unmarried cohabitation in the USA, 2007-2011

    Get PDF
    US studies of marriage and cohabitation have mainly highlighted the social and racial differentials as they were observed in cross-sections, and have as a result essentially focused on the "pattern of disadvantage". The evolution of such social differentials over time and space reveals that this pattern of disadvantage has clearly persisted, but that it is far from covering the whole story. Historically, there has been a major contribution to the rise of cohabitation by white college students, and later on young white adults with higher education continued to start unions via cohabitation to ever increasing degrees. Only, they seem to move into marriage to a greater extent later on in life than other population segments. Also, the religious affiliation matters greatly: Mormons and evangelical Christians have resisted the current trends. Furthermore this effect is not only operating at the individual but at the contextual level as well. Conversely, even after controls for competing socio-economic explanations, residence in areas (either counties or PUMA-areas) with a Democratic voting pattern is related to higher cohabitation probabilities. And, finally, different legal contexts at the level of States also significantly contributed to the emergence of strong spatial contrasts. Hence, there is a concurrence of several factors shaping the present differentiations, and the rise of secular and liberal attitudes, i.e. the "ethics revolution", is equally a part of the explanation

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Immunoregulation by members of the TGFβ superfamily

    No full text
    Cancer Signaling networks and Molecular Therapeutic

    Symposion 2

    No full text

    Pharmacological Modulation of Redox Status in Bone Marrow

    No full text

    References

    No full text

    Search for a correlation between the UHECRs measured by the Pierre Auger Observatory and the Telescope Array and the neutrino candidate events from IceCube

    No full text
    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube ‘high-energy starting events’ sample and the other with 16 high-energy ‘track events’. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values 3◦ , 6◦ and 9 ◦ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches. </p

    Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    Get PDF
    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the searches performed. The smallest of the p-values comes from the search for correlation between UHECRs with IceCube high-energy cascades, a result that should continue to be monitored.ope
    corecore