2,217 research outputs found

    A hybrid assembly by encapsulation of human cells within mineralised beads for cell therapy

    Get PDF
    BACKGROUND: The design of new technologies for treatment of human disorders such as protein deficiencies is a complex and difficult task. Particularly, the construction of artificial organs, based on the immunoisolation of protein-secreting cells, requires the use of suitable materials which have to be biocompatible with the immunoisolated cells and avoid any inappropriate host response. METHODOLOGY/PRINCIPAL FINDINGS: This work investigates the in vivo behavior of mechanically resistant hybrid beads which can be considered as a model for artificial organ for cell therapy. This hybrid system was designed and fabricated via the encapsulation of living cells (HepG2) within alginate-silica composites. Two types of beads (alginate-silica hybrid (AS) or alginate/silica hybrid subsequently covered by an external layer of pure alginate (ASA)), with or without HepG2 cells, were implanted into several female Wistar rats. After four weeks, the potential inflammatory local response that might be due to the presence of materials was studied by histochemistry. The results showed that the performance of ASA beads was quite promising compared to AS beads, where less abnormal rat behaviour and less inflammatory cells in histological sections were observed in the case of ASA beads. CONCLUSIONS/SIGNIFICANCE: The current study highlights that alginate-silica composite materials coated with an extra-alginate shell offer much promise in the development of robust implantation devices and artificial organs

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Human leukocyte antigen supertype matching after myeloablative hematopoietic cell transplantation with 7/8 matched unrelated donor allografts: a report from the Center for International Blood and Marrow Transplant Research

    Get PDF
    The diversity of the human leukocyte antigen (HLA) class I and II alleles can be simplified by consolidating them into fewer supertypes based on functional or predicted structural similarities in epitope-binding grooves of HLA molecules. We studied the impact of matched and mismatched HLA-A (265 versus 429), -B (230 versus 92), -C (365 versus 349), and -DRB1 (153 versus 51) supertypes on clinical outcomes of 1934 patients with acute leukemias or myelodysplasia/myeloproliferative disorders. All patients were reported to the Center for International Blood and Marrow Transplant Research following single-allele mismatched unrelated donor myeloablative conditioning hematopoietic cell transplantation. Single mismatched alleles were categorized into six HLA-A (A01, A01A03, A01A24, A02, A03, A24), six HLA-B (B07, B08, B27, B44, B58, B62), two HLA-C (C1, C2), and five HLA-DRB1 (DR1, DR3, DR4, DR5, DR9) supertypes. Supertype B mismatch was associated with increased risk of grade II-IV acute graft-versus-host disease (hazard ratio =1.78, P=0.0025) compared to supertype B match. Supertype B07-B44 mismatch was associated with a higher incidence of both grade II-IV (hazard ratio=3.11, P=0.002) and III-IV (hazard ratio=3.15, P=0.01) acute graft-versus-host disease. No significant associations were detected between supertype-matched versus -mismatched groups at other HLA loci. These data suggest that avoiding HLA-B supertype mismatches can mitigate the risk of grade II-IV acute graft-versus-host disease in 7/8-mismatched unrelated donor hematopoietic cell transplantation when multiple HLA-B supertype-matched donors are available. Future studies are needed to define the mechanisms by which supertype mismatching affects outcomes after alternative donor hematopoietic cell transplantation

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Hybrid Shell Engineering of Animal Cells for Immune Protections and Regulation of Drug Delivery: Towards the Design of “Artificial Organs”

    Get PDF
    BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient

    Differential overexpression of SERPINA3 in human prion diseases

    Get PDF
    Prion diseases are fatal neurodegenerative disorders with sporadic, genetic or acquired etiologies. The molecular alterations leading to the onset and the spreading of these diseases are still unknown. In a previous work we identified a five-gene signature able to distinguish intracranially BSE-infected macaques from healthy ones, with SERPINA3 showing the most prominent dysregulation. We analyzed 128 suitable frontal cortex samples, from prion-affected patients (variant Creutzfeldt-Jakob disease (vCJD) n = 20, iatrogenic CJD (iCJD) n = 11, sporadic CJD (sCJD) n = 23, familial CJD (gCJD) n = 17, fatal familial insomnia (FFI) n = 9, Gerstmann-Sträussler-Scheinker syndrome (GSS)) n = 4), patients with Alzheimer disease (AD, n = 14) and age-matched controls (n = 30). Real Time-quantitative PCR was performed for SERPINA3 transcript, and ACTB, RPL19, GAPDH and B2M were used as reference genes. We report SERPINA3 to be strongly up-regulated in the brain of all human prion diseases, with only a mild up-regulation in AD. We show that this striking up-regulation, both at the mRNA and at the protein level, is present in all types of human prion diseases analyzed, although to a different extent for each specific disorder. Our data suggest that SERPINA3 may be involved in the pathogenesis and the progression of prion diseases, representing a valid tool for distinguishing different forms of these disorders in humans
    corecore