745 research outputs found

    Anatomical liver segmentectomy 2 for combined hepatocellular carcinoma and cholangiocarcinoma with tumor thrombus in segment 2 portal branch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic resection is the only effective treatment for combined hepatocellular carcinoma and cholangiocarcinoma.</p> <p>Case presentation</p> <p>A 52-year-old man was preoperatively diagnosed with hepatocellular carcinoma in segment 2 with tumor thrombus in the segment 2 portal branch. Anatomical liver segmentectomy 2, including separation of the hepatic arteries, portal veins, and bile duct, enabled us to remove the tumor and portal thrombus completely. Modified selective hepatic vascular exclusion, which combines extrahepatic control of the left and middle hepatic veins with occlusion of left hemihepatic inflow, was used to reduce blood loss. A pathological examination revealed combined hepatocellular carcinoma and cholangiocarcinoma with tumor thrombus in the segment 2 portal branch. No postoperative liver failure occurred, and remnant liver function was adequate.</p> <p>Conclusion</p> <p>The separation method of the hepatic arteries, portal veins, and bile duct is safe and feasible for a liver cancer patient with portal vein tumor thrombus. Modified selective hepatic vascular exclusion was useful to control bleeding during liver transection. Anatomical liver segmentectomy 2 using these procedures should be considered for a patient with a liver tumor located at segment 2 arising from a damaged liver.</p

    Integration of Solexa sequences on an ultradense genetic map in Brassica rapa L.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequence related amplified polymorphism (SRAP) is commonly used to construct high density genetic maps, map genes and QTL of important agronomic traits in crops and perform genetic diversity analysis without knowing sequence information. To combine next generation sequencing technology with SRAP, Illumina's Solexa sequencing was used to sequence tagged SRAP PCR products.</p> <p>Results</p> <p>Three sets of SRAP primers and three sets of tagging primers were used in 77,568 SRAP PCR reactions and the same number of tagging PCR reactions respectively to produce a pooled sample for Illumina's Solexa sequencing. After sequencing, 1.28 GB of sequence with over 13 million paired-end sequences was obtained and used to match Solexa sequences with their corresponding SRAP markers and to integrate Solexa sequences on an ultradense genetic map. The ultradense genetic bin map with 465 bins was constructed using a recombinant inbred (RI) line mapping population in <it>B. rapa</it>. For this ultradense genetic bin map, 9,177 SRAP markers, 1,737 integrated unique Solexa paired-end sequences and 46 SSR markers representing 10,960 independent genetic loci were assembled and 141 unique Solexa paired-end sequences were matched with their corresponding SRAP markers. The genetic map in <it>B. rapa </it>was aligned with the previous ultradense genetic map in <it>B. napus </it>through common SRAP markers in these two species. Additionally, SSR markers were used to perform alignment of the current genetic map with other five genetic maps in <it>B. rapa </it>and <it>B. napus</it>.</p> <p>Conclusion</p> <p>We used SRAP to construct an ultradense genetic map with 10,960 independent genetic loci in <it>B. rapa </it>that is the most saturated genetic map ever constructed in this species. Using next generation sequencing, we integrated 1,878 Solexa sequences on the genetic map. These integrated sequences will be used to assemble the scaffolds in the <it>B. rapa </it>genome. Additionally, this genetic map may be used for gene cloning and marker development in <it>B. rapa </it>and <it>B. napus</it>.</p

    Complementary intestinal mucosa and microbiota responses to caloric restriction

    Get PDF
    The intestine is key for nutrient absorption and for interactions between the microbiota and its host. Therefore, the intestinal response to caloric restriction (CR) is thought to be more complex than that of any other organ. Submitting mice to 25% CR during 14 days induced a polarization of duodenum mucosa cell gene expression characterised by upregulation, and downregulation of the metabolic and immune/inflammatory pathways, respectively. The HNF, PPAR, STAT, and IRF families of transcription factors, particularly the Pparα and Isgf3 genes, were identified as potentially critical players in these processes. The impact of CR on metabolic genes in intestinal mucosa was mimicked by inhibition of the mTOR pathway. Furthermore, multiple duodenum and faecal metabolites were altered in CR mice. These changes were dependent on microbiota and their magnitude corresponded to microbial density. Further experiments using mice with depleted gut bacteria and CR-specific microbiota transfer showed that the gene expression polarization observed in the mucosa of CR mice is independent of the microbiota and its metabolites. The holistic interdisciplinary approach that we applied allowed us to characterize various regulatory aspects of the host and microbiota response to CR

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Pulmonary Arterial Hypertension Affects the Rat Gut Microbiome

    Get PDF
    We have analysed whether pulmonary arterial hypertension (PAH) alters the rat faecal microbiota. Wistar rats were injected with the VEGF receptor antagonist SU5416 (20 mg/kg s.c.) and followed for 2 weeks kept in hypoxia (10% O2, PAH) or injected with vehicle and kept in normoxia (controls). Faecal samples were obtained and microbiome composition was determined by 16S rRNA gene sequencing and bioinformatic analysis. No effect of PAH on the global microbiome was found (α- or β-diversity). However, PAH-exposed rats showed gut dysbiosis as indicated by a taxonomy-based analysis. Specifically, PAH rats had a three-fold increase in Firmicutes-to-Bacteroidetes ratio. Within the Firmicutes phylum, there were no large changes in the relative abundance of the bacterial families in PAH. Among Bacteroidetes, all families were less abundant in PAH. A clear separation was observed between the control and PAH clusters based on short chain fatty acid producing bacterial genera. Moreover, acetate was reduced in the serum of PAH rats. In conclusion, faecal microbiota composition is altered as a result of PAH. This misbalanced bacterial ecosystem might in turn play a pathophysiological role in PAH by altering the immunologic, hormonal and metabolic homeostasis.This study is supported by grants from Mineco (SAF2014-55399-R, SAF2014-55523-R, SAF2016-77222 and SAF2017-84494-C2-1R), Instituto de Salud Carlos III (PI15/01100), with funds from the European Union (Fondo Europeo de Desarrollo Regional FEDER). M.C., G.M-P. and S.E-R. are funded by Universidad Complutense, Fondo de Garantía Juvenil (Comunidad de Madrid) and Ciberes grant with funds from Fundación Contra la Hipertensión Pulmonar, a FPU grant from Ministerio de Educación, respectively. J.L.I.G is a CNIC IPP COFUND Fellow and has received funding from the People Programme (Marie Curie Actions) of the FP7/2007-2013 under REA grant agreement n° 600396. The CNIC is supported by MEIC-AEI and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505)
    corecore