105 research outputs found

    Modeling of failure mode in knee ligaments depending on the strain rate

    Get PDF
    BACKGROUND: The failure mechanism of the knee ligament (bone-ligament-bone complex) at different strain rates is an important subject in the biomechanics of the knee. This study reviews and summarizes the literature describing ligament injury as a function of stain rate, which has been published during the last 30 years. METHODS: Three modes of injury are presented as a function of strain rate, and they are used to analyze the published cases. The number of avulsions is larger than that of ligament tearing in mode I. There is no significant difference between the number of avulsions and ligament tearing in mode II. Ligament tearing happens more frequently than avulsion in mode III. RESULTS: When the strain rate increases, the order of mode is mode I, II, III, I, and II. Analytical models of ligament behavior as a function of strain rate are also presented and used to provide an integrated framework for describing all of the failure regimes. In addition, this study showed the failure mechanisms with different specimens, ages, and strain rates. CONCLUSION: There have been several a numbers of studies of ligament failure under various conditions including widely varying strain rates. One issue in these studies is whether ligament failure occurs mid-ligament or at the bone attachment point, with assertions that this is a function of the strain rate. However, over the range of strain rates and other conditions reported, there has appeared to be discrepancies in the conclusions on the effect of strain rate. The analysis and model presented here provides a unifying assessment of the previous disparities, emphasizing the differential effect of strain rate on the relative strengths of the ligament and the attachment

    Outcomes of Operatively Treated Acute Knee Dislocations

    Get PDF
    Knee dislocation is a complex and rare injury often presenting in the context of high velocity trauma. The aim of this study is to establish the subjective outcomes of surgically treated knee dislocations. A total of 20 knees dislocations treated by open repair were reviewed. Their progress and outcomes were assessed by using a modified Lysholm score questionnaire. Data was obtained on patient demographics, details of injury, investigation, treatment, rehabilitation, 24 months objective outcome and subjective outcomes. Six patients had a vascular deficit and six had neurological deficits. The median range of motion was 0°-100°. Patients with an initially lower pre-injury level of function were able to return an activity level comparable to their pre-injury status. 22% of competitive athletes retuned to competitive sports. 38% of patients undertaking heavy activity returned to comparable pre-injury level of activity and 67% of patients undertaking moderate level of activity before injury returned to a comparable level after repair. 68% regularly had problems running, 70% problem squatting, 40% swelling and 42% problem with stairs. Most patients however did not have locking of the knee or problems with knees giving way. Patients pain scores decreased over time to an acceptable level. Despite the severity of the injury, majority of patients achieved a satisfactory outcome, although none of the patients reached the same level of function as before the injury. 80% of the patients were satisfied with their outcome. All dissatisfied patients suffered postoperative complications

    Search for High-Mass Resonances Decaying to Ï„Îœ in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to Ï„Îœ using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible Ï„Îœ production cross section. Heavy Wâ€Č bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level

    Measurement of differential cross sections and W + /W − cross-section ratios for W boson production in association with jets at √s =8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the W boson production cross section and the W + /W − cross-section ratio, both in association with jets, in proton--proton collisions at s √ =8 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb −1 . Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the W boson. For a subset of the observables, the differential cross sections of positively and negatively charged W bosons are measured separately. In the cross-section ratio of W + /W − the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proto

    Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at √s = 13 TeV corresponding to an integrated luminosity of 36.1 fb −1 recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs

    Measurement of differential cross-sections of a top quark produced in association with a W boson at √s=13 TeV with ATLAS

    Get PDF
    The differential cross-section for the production of a W boson in association with a top quark is measured for several particle-level observables. The measurements are performed using 36.1fb−1 of pp collision data collected with the ATLAS detector at the LHC in 2015 and 2016. Differential cross-sections are measured in a fiducial phase space defined by the presence of two charged leptons and exactly one jet matched to a b-hadron, and are normalised with the fiducial cross-section. Results are found to be in good agreement with predictions from several Monte Carlo event generators

    Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons and Zâ€Č bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb−1 from proton-proton collisions at √s=13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ+τ− with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Zâ€Č bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan ÎČ > 1.0 for mA= 0.25 TeV and tan ÎČ > 42 for mA=1.5 TeV at the 95% confidence level. For the Sequential Standard Model, ZSSMâ€Č with mZâ€Č< 2.42 TeV is excluded at 95% confidence level, while Z NUâ€Č with mZ â€Č < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for heavy resonances decaying into WW in the eΜΌΜ eΜΌΜ final state in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for neutral heavy resonances is performed in the WW→eΜΌΜ decay channel using pp collision data corresponding to an integrated luminosity of 36.1fb−1, collected at a centre-of-mass energy of 13TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark–antiquark annihilation or gluon–gluon fusion process, upper limits on σX×B(X→WW) as a function of the resonance mass are obtained in the mass range between 200GeV GeV and up to 5TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi–Machacek model and a heavy tensor particle coupling only to gauge bosons
    • 

    corecore