192 research outputs found
Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos
Phobos Laser Ranging (PLR) is a concept for a space mission designed to
advance tests of relativistic gravity in the solar system. PLR's primary
objective is to measure the curvature of space around the Sun, represented by
the Eddington parameter , with an accuracy of two parts in ,
thereby improving today's best result by two orders of magnitude. Other mission
goals include measurements of the time-rate-of-change of the gravitational
constant, and of the gravitational inverse square law at 1.5 AU
distances--with up to two orders-of-magnitude improvement for each. The science
parameters will be estimated using laser ranging measurements of the distance
between an Earth station and an active laser transponder on Phobos capable of
reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10
ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12
cm aperture will permit links that even at maximum range will exceed a photon
per second. A total measurement precision of 50 ps demands a few hundred
photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser
ranging (SLR) facilities--with appropriate augmentation--may be able to
participate in PLR. Since Phobos' orbital period is about 8 hours, each
observatory is guaranteed visibility of the Phobos instrument every Earth day.
Given the current technology readiness level, PLR could be started in 2011 for
launch in 2016 for 3 years of science operations. We discuss the PLR's science
objectives, instrument, and mission design. We also present the details of
science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
Accreting Black Holes
This chapter provides a general overview of the theory and observations of
black holes in the Universe and on their interpretation. We briefly review the
black hole classes, accretion disk models, spectral state classification, the
AGN classification, and the leading techniques for measuring black hole spins.
We also introduce quasi-periodic oscillations, the shadow of black holes, and
the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and
Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer
Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin
note: substantial text overlap with arXiv:1711.1025
Hierarchical inference of the relationship between Concentration and Mass in Galaxy Groups and Clusters
Mass is a fundamental property of galaxy groups and clusters. In theory weak gravitational lensing will enable an approximately unbiased measurement of mass, but parametric methods for extracting cluster masses from data require the additional knowledge of concentration. Measurements of both mass and concentration are limited by the degeneracy between the two parameters, particularly in low mass, high redshift systems where the signal-to-noise is low. In this paper we develop a hierarchical model of mass and concentration for mass inference we test our method on toy data and then apply it to a sample of galaxy groups and poor clusters down to masses of 1e13 M. Our fit and model gives a relationship among masses, concentrations and redshift that allow prediction of these parameters from incomplete and noisy future measurements. Additionally the underlying population can be used to infer an observationally based concentration-mass relation. Our method is equivalent to a quasi- stacking approach with the degree of stacking set by the data. We also demonstrate that mass and concentration derived from pure stacking can be offset from the population mean with differing values depending on the method of stacking
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
The health impact of remarriage behavior on chronic obstructive pulmonary disease: findings from the US longitudinal survey
<p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is a major disease among adults, and its deterioration was reported to be associated with psychological imbalance. Meanwhile, bereavement and divorce have proven harmful to the health status of a surviving spouse. But few studies have been conducted to evaluate the remedial effect on survivors' health outcome by remarriage after bereavement. The present study thus examined the associations between remarriage and the onset of COPD.</p> <p>Methods</p> <p>Our cohort was drawn from Health and Retirement Study participants in the United States, and consisted of 2676 subjects who were divorced or bereaved from 1992 to 2002. We then followed them for up to 11 years and assessed the incidence rate of COPD using a Cox proportional hazard model after adjusting for marital status, age, gender, education and the number of cigarettes smoked.</p> <p>Results</p> <p>Among all subjects, 224 who remarried after bereavement or divorce tended to be younger and more male dominated. Remarriage after bereavement/divorce was associated with significantly decreased risk of COPD onset for overall subjects [hazard ratio (HR): 0.51, 95% confidence interval (95% CI): 0.28-0.94], female subjects [HR: 0.36, 95% CI: 0.13-0.98], and for those under 70 years old [HR: 0.36, 95% CI: 0.17-0.79].</p> <p>Conclusion</p> <p>This study investigates the impact of remarriage on health outcome based on a large-scale population survey and indicates that remarriage significantly correlates with reduced risk of COPD incidence, even after adjusting smoking habit.</p
The burden of obesity in the current world and the new treatments available: focus on liraglutide 3.0 mg
GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object
We report the observation of a compact binary coalescence involving a 22.2–24.3 M⊙ black hole and a compact object with a mass of 2.50–2.67 M⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of
Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves,
, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ≤0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries
GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run
We report on gravitational-wave discoveries from compact binary coalescences detected by Advanced
LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15∶00
UTC and 1 October 2019 15∶00 UTC. By imposing a false-alarm-rate threshold of two per year in each of
the four search pipelines that constitute our search, we present 39 candidate gravitational-wave events.
At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were
reported previously in near-real time through gamma-ray coordinates network notices and circulars; 13 are
reported here for the first time. The catalog contains events whose sources are black hole binary mergers up
to a redshift of approximately 0.8, as well as events whose components cannot be unambiguously identified
as black holes or neutron stars. For the latter group, we are unable to determine the nature based on
estimates of the component masses and spins from gravitational-wave data alone. The range of candidate
event masses which are unambiguously identified as binary black holes (both objects ≥ 3 M⊙) is increased
compared to GWTC-1, with total masses from approximately 14 M⊙ for GW190924_021846 to
approximately 150 M⊙ for GW190521. For the first time, this catalog includes binary systems with
significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also
find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our
default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased
sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in approximately
26 weeks of data (approximately 1.5 per week) is consistent with GWTC-1
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
- …
