864 research outputs found

    Twin polaritons in semiconductor microcavities

    Full text link
    The quantum correlations between the beams generated by polariton pair scattering in a semiconductor microcavity above the parametric oscillation threshold are computed analytically. The influence of various parameters like the cavity-exciton detuning, the intensity mismatch between the signal and idler beams and the amount of spurious noise is analyzed. We show that very strong quantum correlations between the signal and idler polaritons can be achieved. The quantum effects on the outgoing light fields are strongly reduced due to the large mismatch in the coupling of the signal and idler polaritons to the external photons

    Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams

    Full text link
    We report the first experimental demonstration of conditional preparation of a non classical state of light in the continuous variable regime. Starting from a non degenerate OPO which generates above threshold quantum intensity correlated signal and idler "twin beams", we keep the recorded values of the signal intensity only when the idler falls inside a band of values narrower than its standard deviation. By this very simple technique, we generate a sub-Poissonian state 4.4dB below shot noise from twin beams exhibiting 7.5dB of noise reduction in the intensity difference.Comment: 4 pages, Accepted in Phys. Rev. Let

    Low-lying spectrum of the Y-string three-quark potential using hyper-spherical coordinates

    Full text link
    We calculate the energies of three-quark states with definite permutation symmetry (i.e. of SU(6) multiplets) in the N=0,1,2 shells, confined by the Y-string three-quark potential. The exact Y-string potential consists of one, so-called three-string term, and three angle-dependent two-string terms. Due to this technical complication we treat the problem at three increasingly accurate levels of approximation: 1) the (approximate) three-string potential expanded to first order in trigonometric functions of hyper-spherical angles; 2) the (approximate) three-string potential to all orders in the power expansion in hyper-spherical harmonics, but without taking into account the transition(s) to two-string potentials; 3) the exact minimal-length string potential to all orders in power expansion in hyper-spherical harmonics, and taking into account the transition(s) to two-string potentials. We show the general trend of improvement %convergence of these approximations: The exact non-perturbative corrections to the total energy are of the order of one per cent, as compared with approximation 2), yet the exact energy differences between the [20,1+],[70,2+],[56,2+],[70,0+][20,1^{+}], [70,2^{+}], [56,2^{+}], [70,0^{+}]-plets are shifted to 2:2:0.9, from the Bowler and Tynemouth separation rule 2:2:1, which is obeyed by approximation 2) at the one per cent level. The precise value of the energy separation of the first radial excitation ("Roper") [56,0+][56^{\prime},0^{+}]-plet from the [70,1][70,1^{-}]-plet depends on the approximation, but does not become negative, i.e. the "Roper" remains heavier than the odd-parity [70,1][70,1^{-}]-plet in all of our approximations.Comment: 19 pages, 6 figure

    Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    Get PDF
    This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately

    Measurement of the Spectroscopy of Orbitally Excited B Mesons at LEP

    Get PDF
    We measure the masses, decay widths and relative production rate of orbitally excited B mesons using 1.25 million hadronic Z decays recorded by the L3 detector. B-meson candidates are inclusively reconstructed and combined with charged pions produced at the primary event vertex. An excess of events above the expected background in the B\pi mass spectrum in the region 5.6-5.8 GeV is interpreted as resulting from the decay B_u,d^** -> B^(*)\pi, where B_u,d^** denotes a mixture of l=1 B-meson states containing a u or a d quark. A fit to the mass spectrum yields the masses and decay widths of the B_1^* and B_2^* spin states, as well as the branching fraction for the combination of l=1 states. In addition, evidence is presented for the existence of an excited B-meson state or mixture of states in the region 5.9-6.0 GeV

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT
    corecore