The quantum correlations between the beams generated by polariton pair
scattering in a semiconductor microcavity above the parametric oscillation
threshold are computed analytically. The influence of various parameters like
the cavity-exciton detuning, the intensity mismatch between the signal and
idler beams and the amount of spurious noise is analyzed. We show that very
strong quantum correlations between the signal and idler polaritons can be
achieved. The quantum effects on the outgoing light fields are strongly reduced
due to the large mismatch in the coupling of the signal and idler polaritons to
the external photons