762 research outputs found

    Yang-Yang thermodynamics on an atom chip

    Get PDF
    We investigate the behavior of a weakly interacting nearly one-dimensional (1D) trapped Bose gas at finite temperature. We perform in situ measurements of spatial density profiles and show that they are very well described by a model based on exact solutions obtained using the Yang-Yang thermodynamic formalism, in a regime where other, approximate theoretical approaches fail. We use Bose-gas focusing [Shvarchuck etal., Phys. Rev. Lett. 89, 270404 (2002)] to probe the axial momentum distribution of the gas, and find good agreement with the in situ results.Comment: extended introduction and conclusions, and minor changes throughout; accepted for publication in Phys. Rev. Let

    Archaeal Communities of Frozen Quaternary Sediments of Marine Origin on the Coast of Western Spitsbergen

    Get PDF
    The archaeal composition of permafrost samples taken during the drilling of frozen marine sediments in the area of the Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. This study is based on an analysis of the V4 region of the 16S rRNA gene, carried out using next-generation sequencing. The general phyla of the Archaea domain are Euryarchaeota, Bathyarchaeota, Thaumarchaeota, and Asgardarchaea. As a result of a phylogenetic analysis of the dominant operational taxonomic units, representatives of methanogenic and methane- and ammonium-oxidizing archaea, as well as heterotrophic archaea, are found. The methanogenic archaea of Euryarchaeota phylum, Methanobacteria class, are found in permafrost with controversial genesis, while the methane-oxidizing archaea of Methanomicrobia class Methanosarcinales order are found in the marine permafrost at Cape Finneset: the ANME-2a, -2b group in layers of 8.6 and 11.7 m and the ANME-2d group (Candidatus Methanoperedens) in a layer of 6.5 m. Ammonium-oxidizing archaea of phylum Thaumarchaeota is present in all types of permafrost, while the order of Nitrososphaerales is found in permafrost with controversial genesis and the order Nitrosopumilales is in permafrost with marine and controversial genesis. Representatives of phylum Bathyarchaeota are found stratigraphically in the most ancient samples under study. Asgardarchaeota superfylum is excluded in the layers of permafrost with marine genesis and is represented by the phyla Lokiarchaeota, Thorarchaeota, and an unclassified group belonging to this superphylum. The presence of methane, ethylene, and ethane in the permafrost of the first sea terrace of Cape Finneset at a depth of 11.7 m, as well as the composition of the archaeal community, give us reason to assume that, before freezing, microbiological processes of anaerobic methane oxidation took place in it, probably received from Tertiary rocks. The results of both this and previous works present the Spitsbergen permafrost as a rich archive of genetic information of little-studied prokaryotic groups

    Bacterial Communities of Frozen Quaternary Sediments of Marine Origin on the Coast of Western Spitsbergen

    Get PDF
    The bacterial composition of permafrost samples taken during drilling of frozen marine sediments in the area of Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. The study was based on the analysis of the V4 region of the 16S rRNA gene, carried out using next generation sequencing, as well as using classical microbiological methods (direct luminescence microscopy and aerobic cultivation).The total cell number in permafrost samples ranges from 6.73 ± 0.73 × 106 to 3.37 ± 0.19 107 cells per g. The number of cultivable aerobic bacteria in frozen samples on 1/5 TSA and R2A media ranges from 0 to 6.20 ± 0.45 × 104 CFU/g. Isolates of aerobic bacteria were identified by 16S rRNA gene analysis as representatives of the genera Arthrobacter, Pseudarthrobacter, Psychrobacter, and Rhodoferax. The dominant phyla of the domain Bacteria were Actinobacteria, Proteobacteria, Chloroflexi, Nitrospirae and Firmicutes. As a result of phylogenetic analysis of the dominant operational taxonomic units, representatives of methane oxidizing, sulfate reducing bacteria, as well as heterotrophic bacteria involved in the transformation of organic matter were found

    Both Size and GC-Content of Minimal Introns Are Selected in Human Populations

    Get PDF
    Background: We previously have studied the insertion and deletion polymorphism by sequencing no more than one hundred introns in a mixed human population and found that the minimal introns tended to maintain length at an optimal size. Here we analyzed re-sequenced 179 individual genomes (from African, European, and Asian populations) from the data released by the 1000 Genome Project to study the size dynamics of minimal introns. Principal Findings: We not only confirmed that minimal introns in human populations are selected but also found two major effects in minimal intron evolution: (i) Size-effect: minimal introns longer than an optimal size (87 nt) tend to have a higher ratio of deletion to insertion than those that are shorter than the optimal size; (ii) GC-effect: minimal introns with lower GC content tend to be more frequently deleted than those with higher GC content. The GC-effect results in a higher GC content in minimal introns than their flanking exons as opposed to larger introns ($125 nt) that always have a lower GC content than that of their flanking exons. We also observed that the two effects are distinguishable but not completely separable within and between populations. Conclusions: We validated the unique mutation dynamics of minimal introns in keeping their near-optimal size and GC content, and our observations suggest potentially important functions of human minimal introns in transcript processin

    Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster

    Get PDF
    Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods

    Plasma Levels of Transforming Growth Factor-β1 Reflect Left Ventricular Remodeling in Aortic Stenosis

    Get PDF
    Background: TGF-b1 is involved in cardiac remodeling through an auto/paracrine mechanism. The contribution of TGF-b1 from plasmatic source to pressure overload myocardial remodeling has not been analyzed. We investigated, in patients with valvular aortic stenosis (AS), and in mice subjected to transverse aortic arch constriction (TAC), whether plasma TGF-b1 relates with myocardial remodeling, reflected by LV transcriptional adaptations of genes linked to myocardial hypertrophy and fibrosis, and by heart morphology and function. Methodology/Principal Findings: The subjects of the study were: 39 patients operated of AS; 27 healthy volunteers; 12 mice subjected to TAC; and 6 mice sham-operated. Myocardial samples were subjected to quantitative PCR. Plasma TGF-b1 was determined by ELISA. Under pressure overload, TGF-b1 plasma levels were significantly increased both in AS patients and TAC mice. In AS patients, plasma TGF-b1 correlated directly with aortic transvalvular gradients and LV mass surrogate variables, both preoperatively and 1 year after surgery. Plasma TGF-b1 correlated positively with the myocardial expression of genes encoding extracellular matrix (collagens I and III, fibronectin) and sarcomeric (myosin light chain-2, b-myosin heavy chain) remodelling targets of TGF-b1, in TAC mice and in AS patients. Conclusions/Significance: A circulating TGF-b1-mediated mechanism is involved, in both mice and humans, in the excessive deposition of ECM elements and hypertrophic growth of cardiomyocytes under pressure overload. The possible value of plasma TGF-b1 as a marker reflecting preoperative myocardial remodeling status in AS patients deserves further analysis in larger patient cohorts

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Mobile DNA elements in T4 and related phages

    Get PDF
    Mobile genetic elements are common inhabitants of virtually every genome where they can exert profound influences on genome structure and function in addition to promoting their own spread within and between genomes. Phage T4 and related phage have long served as a model system for understanding the molecular mechanisms by which a certain class of mobile DNA, homing endonucleases, promote their spread. Homing endonucleases are site-specific DNA endonucleases that initiate mobility by introducing double-strand breaks at defined positions in genomes lacking the endonuclease gene, stimulating repair and recombination pathways that mobilize the endonuclease coding region. In phage T4, homing endonucleases were first discovered as encoded within the self-splicing td, nrdB and nrdD introns of T4. Genomic data has revealed that homing endonucleases are extremely widespread in T-even-like phage, as evidenced by the astounding fact that ~11% of the T4 genome encodes homing endonuclease genes, with most of them located outside of self-splicing introns. Detailed studies of the mobile td intron and its encoded endonuclease, I-TevI, have laid the foundation for genetic, biochemical and structural aspects that regulate the mobility process, and more recently have provided insights into regulation of homing endonuclease function. Here, we summarize the current state of knowledge regarding T4-encoded homing endonucleases, with particular emphasis on the td/I-TevI model system. We also discuss recent progress in the biology of free-standing endonucleases, and present areas of future research for this fascinating class of mobile genetic elements
    corecore