411 research outputs found

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Expression Screening of Fusion Partners from an E. coli Genome for Soluble Expression of Recombinant Proteins in a Cell-Free Protein Synthesis System

    Get PDF
    While access to soluble recombinant proteins is essential for a number of proteome studies, preparation of purified functional proteins is often limited by the protein solubility. In this study, potent solubility-enhancing fusion partners were screened from the repertoire of endogenous E. coli proteins. Based on the presumed correlation between the intracellular abundance and folding efficiency of proteins, PCR-amplified ORFs of a series of highly abundant E. coli proteins were fused with aggregation-prone heterologous proteins and then directly expressed for quantitative estimation of the expression efficiency of soluble translation products. Through two-step screening procedures involving the expression of 552 fusion constructs targeted against a series of cytokine proteins, we were able to discover a number of endogenous E. coli proteins that dramatically enhanced the soluble expression of the target proteins. This strategy of cell-free expression screening can be extended to quantitative, global analysis of genomic resources for various purposes.National Research Foundation of KoreaKorea (South). Ministry of Education, Science and Technology (MEST) (grant 2011K000841)Korea (South). Ministry of Education, Science and Technology (MEST) (grant 2011-0027901

    The global burden of tuberculosis: results from the Global Burden of Disease Study 2015

    Get PDF
    Background: An understanding of the trends in tuberculosis incidence, prevalence, and mortality is crucial to tracking of the success of tuberculosis control programmes and identification of remaining challenges. We assessed trends in the fatal and non-fatal burden of tuberculosis over the past 25 years for 195 countries and territories. Methods: We analysed 10 691 site-years of vital registration data, 768 site-years of verbal autopsy data, and 361 site-years of mortality surveillance data using the Cause of Death Ensemble model to estimate tuberculosis mortality rates. We analysed all available age-specific and sex-specific data sources, including annual case notifications, prevalence surveys, and estimated cause-specific mortality, to generate internally consistent estimates of incidence, prevalence, and mortality using DisMod-MR 2.1, a Bayesian meta-regression tool. We assessed how observed tuberculosis incidence, prevalence, and mortality differed from expected trends as predicted by the Socio-demographic Index (SDI), a composite indicator based on income per capita, average years of schooling, and total fertility rate. We also estimated tuberculosis mortality and disability-adjusted life-years attributable to the independent effects of risk factors including smoking, alcohol use, and diabetes. Findings: Globally, in 2015, the number of tuberculosis incident cases (including new and relapse cases) was 10·2 million (95% uncertainty interval 9·2 million to 11·5 million), the number of prevalent cases was 10·1 million (9·2 million to 11·1 million), and the number of deaths was 1·3 million (1·1 million to 1·6 million). Among individuals who were HIV negative, the number of incident cases was 8·8 million (8·0 million to 9·9 million), the number of prevalent cases was 8·9 million (8·1 million to 9·7 million), and the number of deaths was 1·1 million (0·9 million to 1·4 million). Annualised rates of change from 2005 to 2015 showed a faster decline in mortality (–4·1% [–5·0 to –3·4]) than in incidence (–1·6% [–1·9 to –1·2]) and prevalence (–0·7% [–1·0 to –0·5]) among HIV-negative individuals. The SDI was inversely associated with HIV-negative mortality rates but did not show a clear gradient for incidence and prevalence. Most of Asia, eastern Europe, and sub-Saharan Africa had higher rates of HIV-negative tuberculosis burden than expected given their SDI. Alcohol use accounted for 11·4% (9·3–13·0) of global tuberculosis deaths among HIV-negative individuals in 2015, diabetes accounted for 10·6% (6·8–14·8), and smoking accounted for 7·8% (3·8–12·0). Interpretation: Despite a concerted global effort to reduce the burden of tuberculosis, it still causes a large disease burden globally. Strengthening of health systems for early detection of tuberculosis and improvement of the quality of tuberculosis care, including prompt and accurate diagnosis, early initiation of treatment, and regular follow-up, are priorities. Countries with higher than expected tuberculosis rates for their level of sociodemographic development should investigate the reasons for lagging behind and take remedial action. Efforts to prevent smoking, alcohol use, and diabetes could also substantially reduce the burden of tuberculosis

    Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for Evidence of the Type-III Seesaw Mechanism in Multilepton Final States in Proton-Proton Collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

    Get PDF
    A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance p(T)(miss) in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the p(T)(miss) , the scalar sum of jet transverse momenta, and themT2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeVand neutralino masses up to 430 GeVare excluded. For amodel with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeVand neutralino masses up to 1150 GeVare excluded. These limits extend previous results.Peer reviewe

    Search for new phenomena with the M-T2 variable in the all-hadronic final state produced in proton-proton collisions at root s=13TeV

    Get PDF
    Peer reviewe
    corecore