14 research outputs found

    Turbulent Mixing and the Dead Zone in Protostellar Disks

    Get PDF
    We investigate the conditions for the presence of a magnetically inactive dead zone in protostellar disks, using 3-D shearing-box MHD calculations including vertical stratification, Ohmic resistivity and time-dependent ionization chemistry. Activity driven by the magnetorotational instability fills the whole thickness of the disk at 5 AU, provided cosmic ray ionization is present, small grains are absent and the gas-phase metal abundance is sufficiently high. At 1 AU the larger column density of 1700 g/cm^2 means the midplane is shielded from ionizing particles and remains magnetorotationally stable even under the most favorable conditions considered. Nevertheless the dead zone is effectively eliminated. Turbulence mixes free charges into the interior as they recombine, leading to a slight coupling of the midplane gas to the magnetic fields. Weak, large-scale radial fields diffuse to the midplane where they are sheared out to produce stronger azimuthal fields. The resulting midplane accretion stresses are just a few times less than in the surface layers on average.Comment: to appear in the Astrophysical Journal; 25 pages, 10 figure

    Are rotation curves in NGC 6946 and the Milky Way magnetically supported?

    Full text link
    Following the model of magnetically supported rotation of spiral galaxies, the inner disk rotation is dominated by gravity but magnetism is not negligible at radii where the rotation curve becomes flat, and indeed becomes dominant at very large radii. Values of the order of 1 μ\muG, or even less, produce a centripetal force when the absolute value of the slope of the curve [BϕB_\phi, R] (azimuthal field strength versus radius) is less than R−1R^{-1}. The R−1R^{-1}-profile is called the critical profile. From this hypothesis, the following is to be expected: at large radii, a ``subcritical'' profile (slope flatter than R−1R^{-1}); at still larger radii a BϕB_\phi-profile becoming asymptotically critical as the density becomes asymptotically vanishing. Recent observations of magnetic fields in NGC 6946 and the Milky Way are in very good agreement with these predictions. This magnetic alternative requires neither galactic dark matter (DM) nor modification of fundamental laws of physics, but it is not in conflict with these hypotheses, especially with the existence of cosmological cold dark matter (CDM).Comment: 11 pages, 2 figures, accepted for publication in Astron. Astrophy

    Trapping Solids at the Inner Edge of the Dead Zone: 3-D Global MHD Simulations

    Full text link
    The poorly-ionized interior of the protoplanetary disk is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Our aim is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal MHD calculations of the disk treating the turbulence driven by the magneto-rotational instability. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the `butterfly pattern' seen previously in local shearing-box simulations. The mean magnetic field diffuses from the active zone into the dead zone, where the Reynolds stress nevertheless dominates. The greater total accretion stress in the active zone leads to a net reduction in the surface density, so that after 800 years an approximate steady state is reached in which a local radial maximum in the midplane pressure lies near the transition radius. We also observe the formation of density ridges within the active zone. The dead zone in our models possesses a mean magnetic field, significant Reynolds stresses and a steady local pressure maximum at the inner edge, where the outward migration of planetary embryos and the efficient trapping of solid material are possible.Comment: 17 pages, 30 *.ps files for figures. Accepted 16 November 2009 in A&

    Galactic dynamo simulations

    Full text link
    Recent simulations of supernova-driven turbulence within the ISM support the existence of a large-scale dynamo. With a growth time of about two hundred million years, the dynamo is quite fast -- in contradiction to many assertions in the literature. We here present details on the scaling of the dynamo effect within the simulations and discuss global mean-field models based on the adopted turbulence coefficients. The results are compared to global simulations of the magneto-rotational instability.Comment: 10 pages, 5 figures, IAU Symp. 259 proceedings (in press

    The Turbulent Interstellar Medium

    Get PDF
    An overview is presented of the main properties of the interstellar medium. Evidence is summarized that the interstellar medium is highly turbulent, driven on different length scales by various energetic processes. Large-scale turbulence determines the formation of structures like filaments and shells in the diffuse interstellar medium. It also regulates the formation of dense, cold molecular clouds. Molecular clouds are now believed to be transient objects that form on timescales of order 1e7 yrs in regions where HI gas is compressed and cools. Supersonic turbulence in the compressed HI slab is generated by a combination of hydrodynamical instabilities, coupled with cooling. Turbulent dissipation is compensated by the kinetic energy input of the inflow. Molecular hydrogen eventually forms when the surface density in the slab reaches a threshold value of 1e21 cm^-2 at which point further cooling triggers the onset of star formation by gravitational collapse. A few Myrs later, the newly formed stars and resulting supernovae will disperse their molecular surrounding and generate new expanding shells that drive again turbulence in the diffuse gas and trigger the formation of a next generation of cold clouds. Although a consistent scenario of interstellar medium dynamics and star formation is emerging many details are still unclear and require more detailed work on microphysical processes as well as a better understanding of supersonic, compressible turbulence.Comment: 13 pages, 4 figures, to appear in "Statistical Mechanics of Non-Extensive Systems", eds. F. Combes and R. Robert (Elsevier

    Dynamo coefficients from local simulations of the turbulent ISM

    Full text link
    Observations in polarized emission reveal the existence of large-scale coherent magnetic fields in a wide range of spiral galaxies. Radio-polarization data show that these fields are strongly inclined towards the radial direction, with pitch angles up to 35\degr and thus cannot be explained by differential rotation alone. Global dynamo models describe the generation of the radial magnetic field from the underlying turbulence via the so called α\alpha-effect. However, these global models still rely on crude assumptions about the small-scale turbulence. To overcome these restrictions we perform fully dynamical MHD simulations of interstellar turbulence driven by supernova explosions. From our simulations we extract profiles of the contributing diagonal elements of the dynamo α\alpha-tensor as functions of galactic height. We also measure the coefficients describing vertical pumping and find that the ratio γ^\hat{\gamma} between these two effects has been overestimated in earlier analytical work, where dynamo action seemed impossible. In contradiction to these models based on isolated remnants we always find the pumping to be directed inward. In addition we observe that γ^\hat{\gamma} depends on whether clustering in terms of super-bubbles is taken into account. Finally, we apply a test field method to derive a quantitative measure of the turbulent magnetic diffusivity which we determine to be ~ 2 kpc kms.Comment: 6 pages, 3 figures, to be published in A

    Magnetohydrodynamic experiments on cosmic magnetic fields

    Full text link
    It is widely known that cosmic magnetic fields, i.e. the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamically stable flow was obtained in the "Potsdam Rossendorf Magnetic Instability Experiment" (PROMISE). In this review, the history of dynamo and MRI related experiments is delineated, and some directions of future work are discussed.Comment: 25 pages, 26 figures, to appear in ZAM

    The orientations of molecular clouds in the outer Galaxy: Evidence for the scale of the turbulence driver ?

    Full text link
    Supernova explosions inject a considerable amount of energy into the interstellar medium (ISM) in regions with high to moderate star formation rates. In order to assess whether the driving of turbulence by supernovae is also important in the outer Galactic disk, where the star formation rates are lower, we study the spatial distribution of molecular cloud (MC) inclinations with respect to the Galactic plane. The latter contains important information on the nature of the mechanism of energy injection into the ISM. We analyze the spatial correlations between the position angles (PAs) of a selected sample of MCs (the largest clouds in the catalogue of the outer Galaxy published by Heyer et al. 2001). Our results show that when the PAs of the clouds are all mapped to values into the [0,90]degrees interval, there is a significant degree of spatial correlation between the PAPAs on spatial scales in the range of 100-800 pc. These scales are of the order of the sizes of individual SN shells in low density environments such as those prevailing in the outer Galaxy and where the metallicity of the ambient gas is of the order of the solar value or smaller. These findings suggest that individual SN explosions, occurring in the outer regions of the Galaxy and in likewise spiral galaxies, albeit at lower rates, continue to play an important role in shaping the structure and dynamics of the ISM in those regions. The SN explosions we postulate here are likely associated with the existence of young stellar clusters in the far outer regions of the Galaxy and the UV emission and low levels of star formation observed with the GALEX satellite in the outer regions of local galaxies.Comment: Accepted to MNRAS main journal. Additional discussion and and one figure with error estimates is added. 7 pages, 7 figures. Main conclusions unchange

    Interstellar turbulence driven by the magnetorotational instability

    No full text
    The occurrence of the magnetorotational instability (MRI) in vertically stratified galactic disks is considered. Global 3D nonlinear MHD simulations with the ZEUSMP code are performed in a cylindric computational domain. Due to the evolution of the MRI toroidal and poloidal components of the mean magnetic fields are generated. The results are also applied to very young galaxies which are assumed to possess strong magnetic fields already after a few 108 years. The dependence of MRI growth rate on the shear strength is shown. The velocity dispersion grows with height and reaches values of about 5 km s-1 in good agreement with observations and close to the predictions of Sellwood & Balbus ([CITE]). For strong magnetic fields the MRI is suppressed but it is not suppressed by turbulence initially present in the disk
    corecore