1,021 research outputs found

    The thermally-unstable warm neutral medium: key for modeling the interstellar medium

    Full text link
    We present 21-cm absorption measurements towards 12 radio continuum sources with previously identified thermally-unstable warm neutral medium (WNM). These observations were obtained with the Expanded Very Large Array (EVLA) and were complemented with the HI emission spectra obtained with the Arecibo Observatory. Out of 12 sources, HI absorption was detected along 5 lines of sight (seven new absorption features in total), resulting in a detection rate of ~42%. While our observations are sensitive to the WNM with a spin temperature T_s<3000 K, we detected only two wide absorption lines with T_s=400-900 K. These temperatures lie above the range allowed for the cold neutral medium (CNM) by the thermal equilbrium models and signify the thermally unstable WNM. Several absorption features have an optical depth of only a few x10^{-3}. While this is close or lower than what is theoretically expected for the CNM, we show that these weak lines are important for constraining the fraction of the thermally unstable WNM. Our observations demonstrate that, for the first time, high bandpass stability can be achieved with the VLA, allowing detection of absorption lines with a peak optical depth of ~10^{-3}.Comment: 10 pages. Accepted by Ap

    Mechanical Properties of MEMS Materials

    Get PDF

    Reliability of MEMS

    Get PDF

    Ceramic Injection Molding

    Get PDF

    Tiny scale opacity fluctuations from VLBA, MERLIN and VLA observations of HI absorption toward 3C 138

    Full text link
    The structure function of opacity fluctuations is a useful statistical tool to study tiny scale structures of neutral hydrogen. Here we present high resolution observation of HI absorption towards 3C 138, and estimate the structure function of opacity fluctuations from the combined VLA, MERLIN and VLBA data. The angular scales probed in this work are ~ 10-200 milliarcsec (about 5-100 AU). The structure function in this range is found to be well represented by a power law S_tau(x) ~ x^{beta} with index beta ~ 0.33 +/- 0.07 corresponding to a power spectrum P_tau(U) ~ U^{-2.33}. This is slightly shallower than the earlier reported power law index of ~ 2.5-3.0 at ~ 1000 AU to few pc scales. The amplitude of the derived structure function is a factor of ~ 20-60 times higher than the extrapolated amplitude from observation of Cas A at larger scales. On the other hand, extrapolating the AU scale structure function for 3C 138 predicts the observed structure function for Cas A at the pc scale correctly. These results clearly establish that the atomic gas has significantly more structures in AU scales than expected from earlier pc scale observations. Some plausible reasons are identified and discussed here to explain these results. The observational evidence of a shallower slope and the presence of rich small scale structures may have implications for the current understanding of the interstellar turbulence.Comment: 6 pages, 5 figures. Accepted for publication in ApJ. The definitive version will be available at http://iopscience.iop.org

    Characterizing Magnetohydrodynamic Turbulence in the Small Magellanic Cloud

    Full text link
    We investigate the nature and spatial variations of turbulence in the Small Magellanic Cloud (SMC) by applying several statistical methods on the neutral hydrogen (HI) column density image of the SMC and a database of isothermal numerical simulations. By using the 3rd and 4th statistical moments we derive the spatial distribution of the sonic Mach number (M_s) across the SMC. We find that about 90% of the HI in the SMC is subsonic or transonic. However, edges of the SMC `bar' have M_s=4 and may be tracing shearing or turbulent flows. Using numerical simulations we also investigate how the slope of the spatial power spectrum depends on both sonic and Alfven Mach numbers. This allows us to gauge the Alfven Mach number of the SMC and conclude that its gas pressure dominates over the magnetic pressure. The super-Alfvenic nature of the HI gas in the SMC is also highlighted by the bispectrum, a three-point correlation function which characterizes the level of non-Gaussianity in wave modes. We find that the bispectrum of the SMC HI column density displays similar large-scale correlations as numerical simulations, however it has localized enhancements of correlations. In addition, we find a break in correlations at a scale of 160 pc. This may be caused by numerous expanding shells of a similar size

    Heuristic algorithm for single resource constrained project scheduling problem based on the dynamic programming

    Get PDF
    We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm), as well as with Microsoft Project

    The small-scale Structure of the Magellanic Stream as a Foundation for Galaxy Evolution

    Full text link
    The Magellanic Stream (MS) is the nearest example of a gaseous trail formed by interacting galaxies. While the substantial gas masses in these kinds of circumgalactic structures are postulated to represent important sources of fuel for future star formation, the mechanisms whereby this material might be accreted back into galaxies remain unclear. Recent neutral hydrogen (HI) observations have demonstrated that the northern portion of the MS, which probably has been interacting with the Milky Way's hot gaseous halo for close to 1000~Myr, has a larger spatial extent than previously recognized, while also containing significant amounts of small-scale structure. After a brief consideration of the large-scale kinematics of the MS as traced by the recently-discovered extension of the MS, we explore the aging process of the MS gas through the operation of various hydrodynamic instabilities and interstellar turbulence. This in turn leads to consideration of processes whereby MS material survives as cool gas, and yet also evidently fails to form stars. Parallels between the MS and extragalactic tidal features are briefly discussed with an emphasis on steps toward establishing what the MS reveals about the critical role of local processes in determining the evolution of these kinds of systems
    • …
    corecore