323 research outputs found

    Nouvelles crepidogaster (Coleoptera, Caraboidea, Brachinidae) d’Afrique occidentale et de Madagascar

    Get PDF
    Four new species are described within the genus Crepidogaster Boheman, 1848: C. amieti Deuve, sp. n. from Cameroon, C. dolini Deuve, sp. n., C. kavanaughi Deuve, sp. n. and C. mateui Deuve, sp. n. from Madagascar. An identification key is given for all the Crepidogastrinae species known from Madagascar.Описаны 4 новых вида рода Crepidogaster Boheman, 1848: C. amieti Deuve, sp. n. из Камеруна, C. dolini Deuve, sp. n., C. kavanaughi Deuve, sp. n. и C. mateui Deuve, sp. n. с Мадагаскара. Для всех видов Crepidogastrinae с Мадагаскара приведена таблица для определения видов

    The Maghreb – one more important biodiversity hot spot for tiger beetle fauna (Coleoptera, Carabidae, Cicindelinae) in the Mediterranean region

    Get PDF
    The tiger beetle fauna of the Maghreb region is one of the richest in the Palaearctic, including 22 species and 5 subspecies and 19% of all Palaearctic species of Cicindelinae. Assembled by their chorotypes, the Maghreb tiger beetles fall into eight different groups that include Maghreb endemics (26% of fauna), Mediterranean (7%), West Mediterranean (40%), North African (4%), Mediterranean-Westturanian (4%), West Palaearctic (4%), Afrotropico-Indo-Mediterranean (4%), and Saharian (11%) species. The Mediterranean Sclerophyl and Atlas Steppe are the Maghreb biogeographical provinces with the highest species richness, while the Sahara Desert has the lowest Cicindelinae diversity. Twenty-five cicindelid species and subspecies (93% of Maghreb fauna) are restricted to only one or two habitat types in lowland areas. Only Calomera littoralis littoralis and Lophyra flexuosa flexuosa are recognized as eurytopic species and occur in three types of habitat. The highest tiger beetle diversity characterizes salt marshes and river banks (in both cases 11 species and subspecies or 41% of Maghreb fauna). Approximately 85% of all Maghreb tiger beetle species and subspecies are found in habitats potentially endangered by human activity

    Nomenclatural checklist for Acromegalomma species (Annelida, Sabellidae), a nomen novum replacement for the junior homonym Megalomma Johansson, 1926

    Get PDF
    Este artículo contiene 20 páginas.Acromegalomma, nomen novum, is introduced as a replacement name for the polychaete genus Megalomma Johansson, 1926 (Annelida, Sabellidae), preoccupied by Megalomma Westwood, 1842 (Insecta, Coleoptera, Carabidae). The historical background of the homonymy and a full list with 36 new combinations in the new genus are included, while two species are considered as species inquirenda.This work was financially supported by the European Community's Seventh Framework Programme (FP7/2007-2013), through the Assemble Grant Agreement no. 227799-ASSEMBLE to the project “Biodiversity of Annelida Polychaeta in the Ria Formosa coastal lagoon: a baseline study”, awarded to J.G. and developed at the CCMAR, University of Algarve (Faro, Portugal).Peer reviewe

    Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression

    Get PDF
    Antisense transcription through genic regions is pervasive in most genomes; however, its functional significance is still unclear. We are studying the role of antisense transcripts (COOLAIR) in the cold-induced, epigenetic silencing of Arabidopsis FLOWERING LOCUS C (FLC), a regulator of the transition to reproduction. Here we use single-molecule RNA FISH to address the mechanistic relationship of FLC and COOLAIR transcription at the cellular level. We demonstrate that while sense and antisense transcripts can co-occur in the same cell they are mutually exclusive at individual loci. Cold strongly upregulates COOLAIR transcription in an increased number of cells and through the mutually exclusive relationship facilitates shutdown of sense FLC transcription in cis. COOLAIR transcripts form dense clouds at each locus, acting to influence FLC transcription through changed H3K36me3 dynamics. These results may have general implications for other loci showing both sense and antisense transcription

    Cryptic speciation and chromosomal repatterning in the South African climbing mice Dendromus (Rodentia, Nesomyidae)

    Get PDF
    We evaluate the intra- and interspecific diversity in the four South African rodent species of the genus Dendromus. The molecular phylogenetic analysis on twenty-three individuals have been conducted on a combined dataset of nuclear and mitochondrial markers. Moreover, the extent and processes underlying chromosomal variation, have been investigated on three species by mean of G-, C-bands, NORs and Zoo-FISH analysis. The molecular analysis shows the presence of six monophyletic lineages corresponding to D. mesomelas, D. mystacalis and four lineages within D. cfr. melanotis with high divergence values (ranges: 10.6% – 18.3%) that raises the question of the possible presence of cryptic species. The first description of the karyotype for D. mesomelas and D. mystacalis and C- and G- banding for one lineage of D. cfr. melanotis are reported highlighting an extended karyotype reorganization in the genus. Furthermore, the G-banding and Zoo-FISH evidenced an autosome-sex chromosome translocation characterizing all the species and our timing estimates this mutation date back 7.4 mya (Late Miocene). Finally, the molecular clock suggests that cladogenesis took place since the end of Miocene to Plio-Pleistocene, probably due to ecological factors, isolation in refugia followed by differential adaptation to the mesic or dry habitat

    Can we make human plague history? A call to action

    Get PDF
    Plague is a communicable rodent-borne disease caused by Yersinia pestis, a Gram-negative bacillus member of the Enterobacteriaceae family. As a zoonosis, plague is primarily a wildlife disease that occasionally spills over to the human population, resulting in seasonal surges in human cases and localised outbreaks. The predominant clinical form among humans is bubonic plague, which, if untreated, has a lethality of 60%–90% but is readily treatable with antibiotics, reducing the death rate to around 5% if administered shortly after the infection. One to two per cent of all bubonic cases develop into secondary pneumonic plague, which in turn may be transmitted from person to person through respiratory droplets, producing primary pneumonic plague in close contacts. Without antibiotic treatment, pneumonic plague is nearly 100% fatal, but early antibiotic treatment substantially improves survival. Today, Y. pestis is present in at least 26 countries, with more than 30 different flea vectors and over 200 mammal host species. Although human plague cases continue to be reported from Asia and the Americas, most cases currently occur in remote, rural areas of sub-Saharan Africa, mostly in Democratic Republic of Congo and Madagascar (around300–500 per year). However, large-scale transmission may also occur. During the 14th century, the Black Death, caused by Y. pestis, is estimated to have killed 30%–40% of the European population. It is important to emphasise that human plague is mostly a poverty-related disease. Therefore, given that population density and the absolute number of people living in extreme poverty are both increasing in sub-Saharan Africa, there is no likelihood of plague being eliminated as a public health threat in the foreseeable future. However, the WHO does not consider plague to be either a neglected tropical disease or a ‘priority pathogen’ that poses a public health risk because of its epidemic potential. In September 2017, an unprecedented urban outbreak of pneumonic plague was declared in Madagascar, striking primarily its capital Antananarivo and the major seaport of Toamasina. This episode once again brought international attention to plague, reminding us of the capacity for human plague to spread in urban settings and cause substantial societal and economic disruption. This should raise alarm bells that a research agenda is needed

    Phylogenetic Relationships of Tribes Within Harpalinae (Coleoptera: Carabidae) as Inferred from 28S Ribosomal DNA and the Wingless Gene

    Get PDF
    Harpalinae is a large, monophyletic subfamily of carabid ground beetles containing more than 19,000 species in approximately 40 tribes. The higher level phylogenetic relationships within harpalines were investigated based on nucleotide data from two nuclear genes, wingless and 28S rDNA. Phylogenetic analyses of combined data indicate that many harpaline tribes are monophyletic, however the reconstructed trees showed little support for deeper nodes. In addition, our results suggest that the Lebiomorph Assemblage (tribes Lebiini, Cyclosomini, Graphipterini, Perigonini, Odacanthini, Lachnophorini, Pentagonicini, Catapiesini and Calophaenini), which is united by a morphological synapomorphy, is not monophyletic, and the tribe Lebiini is paraphyletic with respect to members of Cyclosomini. Two unexpected clades of tribes were supported: the Zuphiitae, comprised of Anthiini, Zuphiini, Helluonini, Dryptini, Galeritini, and Physocrotaphini; and a clade comprised of Orthogoniini, Pseudomorphini, and Graphipterini. The data presented in this study represent a dense sample of taxa to examine the molecular phylogeny of Harpalinae and provide a useful framework to examine the origin and evolution of morphological and ecological diversity in this group

    Human plague: An old scourge that needs new answers

    Get PDF
    Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague’s resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a “One Health” approach

    Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation

    Get PDF
    Volume: 100Start Page: 55End Page: 14
    corecore