189 research outputs found
Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression
Abstract Purpose: Cancer/testis (CT) genes predominantly expressed in the testis (germ cells) and generally not in other normal tissues are aberrantly expressed in human cancers. This highly restricted expression provides a unique opportunity to use these CTgenes for diagnostics, immunotherapeutic, or other targeted therapies. The purpose of this study was to identify those CT genes with the greatest incidence of expression in uterine cancers. Experimental Design: We queried the expression of known and putative CT gene transcripts (representing 79 gene loci) using whole genome gene expression arrays. Specifically, the global gene expressions of uterine cancers (n = 122) and normal uteri (n = 10) were determined using expression data from the Affymetrix HG-U133A and HG-U133B chips. Additionally, we also examined the brother of the regulator of imprinted sites (BORIS) transcript by reverse transcription-PCR and quantitative PCR because its transcript was not represented on the array. Results: Global microarray analysis detected many CT genes expressed in various uterine cancers; however, no individual CT gene was expressed in more than 25% of all cancers. The expression of the two most commonly expressed CT genes on the arrays, MAGEA9 (24 of 122 cancers and 0 of10 normal tissues) and Down syndrome critical region 8 (DSCR8)/MMA1 (16 if 122 cancers and 0 of 10 normal tissues), was confirmed by reverse transcription-PCR methods, validating the array screening approach. In contrast to the relatively low incidence of expression of the other CTgenes, BORIS expression was detected in 73 of 95 (77%) endometrial cancers and 24 of 31 (77%) uterine mixed mesodermal tumors. Conclusions: These data provide the first extensive survey of multiple CT genes in uterine cancers. Importantly, we detected a high frequency of BORIS expression in uterine cancers, suggesting its potential as an immunologic or diagnostic target for these cancers. Given the high incidence of BORIS expression and its possible regulatory role, an examination of BORIS function in the etiology of these cancers is warranted
Resequencing of genes for transforming growth factor β1 (TGFB1) type 1 and 2 receptors (TGFBR1, TGFBR2), and association analysis of variants with diabetic nephropathy
BACKGROUND: Diabetic nephropathy is the leading cause of end stage renal failure in the western world. There is substantial epidemiological evidence supporting a genetic predisposition to diabetic nephropathy, however the exact molecular mechanisms remain unknown. Transforming growth factor (TGFβ1) is a crucial mediator in the pathogenesis of diabetic nephropathy. METHODS: We investigated the role of five known single nucleotide polymorphisms (SNPs) in the TGFB1 gene for their association with diabetic nephropathy in an Irish, type 1 diabetic case (n = 272) control (n = 367) collection. The activity of TGFβ1 is facilitated by the action of type 1 and type 2 receptors, with both receptor genes (TGFBR1 and TGFBR2) shown to be upregulated in diabetic kidney disease. We therefore screened TGFBR1 and TGFBR2 genes for genomic variants using WAVE™ (dHPLC) technology and confirmed variants by direct capillary sequencing. Allele frequencies were determined in forty-eight healthy individuals. Data for all SNPs was assessed for Hardy Weinberg equilibrium, with genotypes and allele frequencies compared using the χ(2 )test for contingency tables. Patterns of linkage disequilibrium were established and common haplotypes estimated. RESULTS: Fifteen variants were identified in these genes, seven of which are novel, and putatively functional SNPs were subsequently genotyped using TaqMan™, Invader™ or Pyrosequencing(® )technology. No significant differences (p > 0.1) were found in genotype or allele distributions between cases and controls for any of the SNPs assessed. CONCLUSION: Our results suggest common variants in TGFB1, TGFBR1 and TGFBR2 genes do not strongly influence genetic susceptibility to diabetic nephropathy in an Irish Caucasian population
Investigation of associations between retinal microvascular parameters and albuminuria in UK Biobank: a cross-sectional case-control study.
BACKGROUND: Associations between microvascular variation and chronic kidney disease (CKD) have been reported previously. Non-invasive retinal fundus imaging enables evaluation of the microvascular network and may offer insight to systemic risk associated with CKD. METHODS: Retinal microvascular parameters (fractal dimension [FD] - a measure of the complexity of the vascular network, tortuosity, and retinal arteriolar and venular calibre) were quantified from macula-centred fundus images using the Vessel Assessment and Measurement Platform for Images of the REtina (VAMPIRE) version 3.1 (VAMPIRE group, Universities of Dundee and Edinburgh, Scotland) and assessed for associations with renal damage in a case-control study nested within the multi-centre UK Biobank cohort study. Participants were designated cases or controls based on urinary albumin to creatinine ratio (ACR) thresholds. Participants with ACR ≥ 3 mg/mmol (ACR stages A2-A3) were characterised as cases, and those with an ACR < 3 mg/mmol (ACR stage A1) were categorised as controls. Participants were matched on age, sex and ethnic background. RESULTS: Lower FD (less extensive microvascular branching) was associated with a small increase in odds of albuminuria independent of blood pressure, diabetes and other potential confounding variables (odds ratio [OR] 1.18, 95% confidence interval [CI] 1.03-1.34 for arterioles and OR 1.24, CI 1.05-1.47 for venules). Measures of tortuosity or retinal arteriolar and venular calibre were not significantly associated with ACR. CONCLUSIONS: This study supports previously reported associations between retinal microvascular FD and other metabolic disturbances affecting the systemic vasculature. The association between retinal microvascular FD and albuminuria, independent of diabetes and blood pressure, may represent a useful indicator of systemic vascular damage associated with albuminuria
Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity
The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum
Genomic profiling distinguishes familial multiple and sporadic multiple meningiomas
<p>Abstract</p> <p>Background</p> <p>Meningiomas may occur either as familial tumors in two distinct disorders, familial multiple meningioma and neurofibromatosis 2 (NF2), or sporadically, as either single or multiple tumors in individuals with no family history. Meningiomas in NF2 and approximately 60% of sporadic meningiomas involve inactivation of the <it>NF2 </it>locus, encoding the tumor suppressor merlin on chromosome 22q. This study was undertaken to establish whether genomic profiling could distinguish familial multiple meningiomas from sporadic solitary and sporadic multiple meningiomas.</p> <p>Methods</p> <p>We compared 73 meningiomas presenting as sporadic solitary (64), sporadic multiple (5) and familial multiple (4) tumors using genomic profiling by array comparative genomic hybridization (array CGH).</p> <p>Results</p> <p>Sporadic solitary meningiomas revealed genomic rearrangements consistent with at least two mechanisms of tumor initiation, as unsupervised cluster analysis readily distinguished tumors with chromosome 22 deletion (associated with loss of the <it>NF2 </it>tumor suppressor) from those without chromosome 22 deletion. Whereas sporadic meningiomas without chromosome 22 loss exhibited fewer chromosomal imbalance events overall, tumors with chromosome 22 deletion further clustered into two major groups that largely, though not perfectly, matched with their benign (WHO Grade I) or advanced (WHO Grades II and III) histological grade, with the latter exhibiting a significantly greater degree of genomic imbalance (P < 0.001). Sporadic multiple meningiomas showed a frequency of genomic imbalance events comparable to the atypical grade solitary tumors. By contrast, familial multiple meningiomas displayed no imbalances, supporting a distinct mechanism for the origin for these tumors.</p> <p>Conclusion</p> <p>Genomic profiling can provide an unbiased adjunct to traditional meningioma classification and provides a basis for exploring the different genetic underpinnings of tumor initiation and progression. Most importantly, the striking difference observed between sporadic and familial multiple meningiomas indicates that genomic profiling can provide valuable information for differential diagnosis of subjects with multiple meningiomas and for considering the risk for tumor occurrence in their family members.</p
Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude
The Role of Inflammatory Mediators in the Pathogenesis of Otitis Media and Sequelae
This review deals with the characteristics of various inflammatory mediators identified in the middle ear during otitis media and in cholesteatoma. The role of each inflammatory mediator in the pathogenesis of otitis media and cholesteatoma has been discussed. Further, the relation of each inflammatory mediator to the pathophysiology of the middle and inner ear along with its mechanisms of pathological change has been described. The mechanisms of hearing loss including sensorineural hearing loss (SNHL) as a sequela of otitis media are also discussed. The passage of inflammatory mediators through the round window membrane into the scala tympani is indicated. In an experimental animal model, an application of cytokines and lipopolysaccharide (LPS), a bacterial toxin, on the round window membrane induced sensorineural hearing loss as identified through auditory brainstem response threshold shifts. An increase in permeability of the blood-labyrinth barrier (BLB) was observed following application of these inflammatory mediators and LPS. The leakage of the blood components into the lateral wall of the cochlea through an increase in BLB permeability appears to be related to the sensorineural hearing loss by hindering K+ recycling through the lateral wall disrupting the ion homeostasis of the endolymph. Further studies on the roles of various inflammatory mediators and bacterial toxins in inducing the sensorineumral hearing loss in otitis media should be pursued
A genome-wide association study of anorexia nervosa.
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field
HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer
BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
- …