521 research outputs found

    p21(WAF1/CIP1) expression in gestational trophoblastic disease: correlation with clinicopathological parameters, and Ki67 and p53 gene expression

    Get PDF
    Background--The p21(WAF1/CIP1) gene mediates growth arrest by inhibiting G 1 cyclin dependent kinases and has been considered as a downstream effector of the tumour suppressor gene p53. Aim--To analyse the role of p21(WAF1/CIP1) in gestational trophoblastic disease. Methods--The immunohistochemical expression of p21(WAF1/CIP1) gene was measured in 33 placentas, 28 partial hydatidiform moles, 54 complete hydatidiform moles, and 13 choriocarcinomas in paraffin wax embedded tissue. The results were correlated with p53 (DO7) and Ki67 (MIB1) immunoreactivity as well as clinical progress. Results--p21(WAF1/CIP1) immunoreactivity was found predominantly in the nuclei of the syncytiotrophoblasts. p21(WAF1/CIP1) protein expression correlated with gestational age in normal placentas (p = 0.0001) but not in hydatidiform moles (p = 0.89). Complete hydatidiform moles and choriocarcinomas had a significantly higher p21(WAF1/CIP1) expression compared with normal placentas and partial hydatiform moles (p 0.05) in p21(WAF1/CIP1) expression between the 17 patients who developed persistent gestational trophoblastic disease and those who did not. Conclusions--This study suggests that p21(WAF1/CIP1) expression in trophoblastic disease may be induced by a p53 independent pathway. The proliferative activity of gestational trophoblastic diseases might not be determined solely by the control of the cell cycle operated by p21(WAF1/CIP1). p21(WAF1/CIP1) expression is not an accurate prognostic indicator of gestational trophoblastic disease.published_or_final_versio

    Enhanced recovery in colorectal surgery: a multicentre study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major colorectal surgery usually requires a hospital stay of more than 12 days. Inadequate pain management, intestinal dysfunction and immobilisation are the main factors associated with delay in recovery. The present work assesses the short and medium term results achieved by an enhanced recovery program based on previously published protocols.</p> <p>Methods</p> <p>This prospective study, performed at 12 Spanish hospitals in 2008 and 2009, involved 300 patients. All patients underwent elective colorectal resection for cancer following an enhanced recovery program. The main elements of this program were: preoperative advice, no colon preparation, provision of carbohydrate-rich drinks one day prior and on the morning of surgery, goal directed fluid administration, body temperature control during surgery, avoiding drainages and nasogastric tubes, early mobilisation, and the taking of oral fluids in the early postoperative period. Perioperative morbidity and mortality data were collected and the length of hospital stay and protocol compliance recorded.</p> <p>Results</p> <p>The median age of the patients was 68 years. Fifty-two % of the patients were women. The distribution of patients by ASA class was: I 10%, II 50% and III 40%. Sixty-four % of interventions were laparoscopic; 15% required conversion to laparotomy. The majority of patients underwent sigmoidectomy or right hemicolectomy. The overall compliance to protocol was approximately 65%, but varied widely in its different components. The median length of postoperative hospital stay was 6 days. Some 3% of patients were readmitted to hospital after discharge; some 7% required repeat surgery during their initial hospitalisation or after readmission. The most common complications were surgical (24%), followed by septic (11%) or other medical complications (10%). Three patients (1%) died during follow-up. Some 31% of patients suffered symptoms that delayed their discharge, the most common being vomiting or nausea (12%), dyspnoea (7%) and fever (5%).</p> <p>Conclusion</p> <p>The following of this enhanced recovery program posed no risk to patients in terms of morbidity, mortality and shortened the length of their hospital stay. Overall compliance to protocol was 65%. The following of this program was of benefit to patients and reduces costs by shortening the length of hospital stay. The implantation of such programmes is therefore highly recommended.</p

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    corecore