1,018 research outputs found

    Transformation textures in post-perovskite: Understanding mantle flow in the D '' layer of the Earth

    Get PDF
    Deformation and texture formation in (Mg, Fe)SiO3 post perovskite (ppv) is a potential explanation for the strong seismic anisotropy that is found in the D '' layer of the Earth. However, different experimental approaches have resulted in different lattice preferred orientations (LPO) in deformed ppv that have led to ambiguity in the interpretation of deformation in the lowermost mantle. Here, we show that deformation of the analogue substance CaIrO3 during a phase transformation from perovskite to ppv leads to a transformation texture that differs from the CaIrO3 ppv deformation texture but resembles the results from ppv deformation experiments in diamond anvil cells. Assuming material spreading parallel to the core-mantle boundary, our results predict a widespread shear wave splitting with fast horizontal S-waves, which is compatible with seismic studies. Downwelling material that undergoes a phase transformation may develop a transformation texture that would locally result in vertically polarized fast S-waves. Citation: Walte, N. P., F. Heidelbach, N. Miyajima, D. J. Frost, D. C. Rubie, and D. P. Dobson (2009), Transformation textures in post-perovskite: Understanding mantle flow in the D '' layer of the Earth, Geophys. Res. Lett., 36, L04302, doi: 10.1029/2008GL036840

    Adverse drug reactions from psychotropic medicines in the paediatric population: analysis of reports to the Danish Medicines Agency over a decade

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prescribing of psychotropic medicines for the paediatric population is rapidly increasing. In attempts to curb the use of psychotropic medicine in the paediatric population, regulatory authorities have issued various warnings about risks associated with use of these products in childhood. Little evidence has been reported about the adverse drug reactions (ADRs) of these medicines in practice. As spontaneous reports are the main source for information about previously unknown ADRs, we analysed data submitted to a national ADR database. The objective was to characterise ADRs reported for psychotropic medicines in the Danish paediatric population over a decade.</p> <p>Findings</p> <p>All spontaneous ADR reports from 1998 to 2007 for children from birth to 17 years of age were included. The unit of analysis was one ADR. We analysed the distribution of ADRs per year, seriousness, age and gender of the child, suspected medicine and type of reported ADR. A total of 429 ADRs were reported for psychotropic medicines and 56% of these were classified as serious. Almost 20% of psychotropic ADRs were reported for children from birth up to 2 years of age and one half of ADRs were reported in adolescents, especially for antidepressants and psychostimulants. Approximately 60% of ADRs were reported for boys. Forty percent of all ADRs were from the category 'nervous and psychiatric disorders'. All but one ADR reported for children below two years were serious and two of these were fatal. A number of serious ADRs reported in children from birth up to 2 years of age were presumably caused by mothers' use of psychotropic medicines during pregnancy.</p> <p>Conclusion</p> <p>The high number of serious ADRs reported for psychotropic medicines in the paediatric population should be a concern for health care professionals and physicians. Considering the higher number of birth defects being reported greater care has to be given while prescribing these drugs for pregnant women.</p

    Systematic in vivo analysis of the intrinsic determinants of amyloid Beta pathogenicity.

    Get PDF
    Protein aggregation into amyloid fibrils and protofibrillar aggregates is associated with a number of the most common neurodegenerative diseases. We have established, using a computational approach, that knowledge of the primary sequences of proteins is sufficient to predict their in vitro aggregation propensities. Here we demonstrate, using rational mutagenesis of the Abeta42 peptide based on such computational predictions of aggregation propensity, the existence of a strong correlation between the propensity of Abeta42 to form protofibrils and its effect on neuronal dysfunction and degeneration in a Drosophila model of Alzheimer disease. Our findings provide a quantitative description of the molecular basis for the pathogenicity of Abeta and link directly and systematically the intrinsic properties of biomolecules, predicted in silico and confirmed in vitro, to pathogenic events taking place in a living organism

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

    Get PDF
    We have developed a multi-dimensional super-resolution (md-SR) imaging technique to determine both the localization and the environmental properties of single-molecule fluorescent emitters. The method, termed sPAINT, exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule to enable the mapping of hydrophobicity of biological structures. We first validated the sPAINT method by studying synthetic lipid vesicles of known composition, then applied it to measure the hydrophobicity of amyloid fibrils and oligomers implicated in neurodegenerative diseases, and of the plasma membrane of mammalian cells. sPAINT is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, which enables all the necessary information to be extracted simultaneously from a single image plane. sPAINT enables the hydrophobicity of surfaces to be mapped at the nanoscale in a dynamic fashion.Medical Research Council (Grant ID: MR/K015850/1), Engineering and Physical Sciences Research Council, Royal Society (University Research Fellowship, Grant ID: UF120277), Augustus Newman Foundation, Cambridge Advanced Imaging Centre, Christ’s Colleg

    Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress

    Get PDF
    BACKGROUND: Oxidative damage to mitochondrial DNA has been implicated as a causative factor in a wide variety of degenerative diseases, aging and cancer. The modified guanine, 7,8-dihydro-8-oxoguanine (also known as 8-hydroxyguanine) is one of the major oxidized bases generated in DNA by reactive oxygen species and has gained most of the attention in recent years as a marker of oxidative DNA injury and its suspected role in the initiation of carcinogenesis. 8-hydroxyguanine is removed by hOgg1, a DNA glycosylase/AP lyase involved in the base excision repair pathway. METHODS: We over-expressed wild type and R229Q mutant hOGG1 in the nucleus and mitochondria of cells lacking mitochondrial hOGG1 expression through an expression vector containing nuclear and mitochondrial targeting sequence respectively. We used quantitative real time PCR to analyze mtDNA integrity after exposure to oxidative damaging agents, in cells transfected with or without mitochondrially-targeted mutant hogg1. RESULT: Over-expression of wild type hOgg1 in both nucleus and mitochondria resulted in increased cellular survival when compared to vector or mutant over-expression of hOGG1. Interestingly, mitochondrially-targeted mutant hogg1 resulted in more cell death than nuclear targeted mutant hogg1 upon exposure of cells to oxidative damage. Additional we examined mitochondrial DNA integrity after oxidative damage exposure using real-time quantitative PCR. The presence of mutant hogg1 in the mitochondria resulted in reduced mitochondrial DNA integrity when compared to the wild type. Our work indicates that the R229Q hOGG1 mutation failed to protect cells from oxidative damage and that such mutations in cancer may be more detrimental to cellular survival when present in the mitochondria than in the nucleus. CONCLUSION: These findings suggest that deficiencies in hOGG1, especially in the mitochondria may lead to reduced mitochondrial DNA integrity, consequently resulting in decreased cell viability

    Relationships between intensity, duration, cumulative dose, and timing of smoking with age at menopause: A pooled analysis of individual data from 17 observational studies.

    Full text link
    BackgroundCigarette smoking is associated with earlier menopause, but the impact of being a former smoker and any dose-response relationships on the degree of smoking and age at menopause have been less clear. If the toxic impact of cigarette smoking on ovarian function is irreversible, we hypothesized that even former smokers might experience earlier menopause, and variations in intensity, duration, cumulative dose, and age at start/quit of smoking might have varying impacts on the risk of experiencing earlier menopause.Methods and findingsA total of 207,231 and 27,580 postmenopausal women were included in the cross-sectional and prospective analyses, respectively. They were from 17 studies in 7 countries (Australia, Denmark, France, Japan, Sweden, United Kingdom, United States) that contributed data to the International collaboration for a Life course Approach to reproductive health and Chronic disease Events (InterLACE). Information on smoking status, cigarettes smoked per day (intensity), smoking duration, pack-years (cumulative dose), age started, and years since quitting smoking was collected at baseline. We used multinomial logistic regression models to estimate multivariable relative risk ratios (RRRs) and 95% confidence intervals (CIs) for the associations between each smoking measure and categorised age at menopause (ConclusionsThe probability of earlier menopause is positively associated with intensity, duration, cumulative dose, and earlier initiation of smoking. Smoking duration is a much stronger predictor of premature and early menopause than others. Our findings highlight the clear benefits for women of early smoking cessation to lower their excess risk of earlier menopause
    corecore