247 research outputs found
Recommended from our members
Modifiable predictors of depression following childhood maltreatment: a systematic review and meta-analysis
Although maltreatment experiences in childhood increase the risk for depression, not all maltreated children become depressed. This review aims to systematically examine the existing literature to identify modifiable factors that increase vulnerability to, or act as a buffer against, depression, and could therefore inform the development of targeted interventions. Thirteen databases (including Medline, PsychINFO, SCOPUS) were searched (between 1984 and 2014) for prospective, longitudinal studies published in English that included at least 300 participants and assessed associations between childhood maltreatment and later depression. The study quality was assessed using an adapted Newcastle-Ottawa Scale checklist. Meta-analyses (random effects models) were performed on combined data to estimate the effect size of the association between maltreatment and depression. Meta-regressions were used to explore effects of study size and quality. We identified 22 eligible articles (N=12 210 participants), of which 6 examined potential modifiable predictors of depression following maltreatment. No more than two studies examined the same modifiable predictor; therefore, it was not possible to examine combined effects of modifiable predictors with meta-regression. It is thus difficult to draw firm conclusions from this study, but initial findings indicate that interpersonal relationships, cognitive vulnerabilities and behavioral difficulties may be modifiable predictors of depression following maltreatment. There is a lack of well-designed, prospective studies on modifiable predictors of depression following maltreatment. A small amount of initial research suggests that modifiable predictors of depression may be specific to maltreatment subtypes and gender. Corroboration and further investigation of causal mechanisms is required to identify novel targets for intervention, and to inform guidelines for the effective treatment of maltreated children
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea
Pseudocheiridae (Marsupialia: Diprotodontia) is a family of endemic Australasian arboreal folivores, more commonly known as ringtail possums. Seventeen extant species are grouped into six genera (Pseudocheirus, Pseudochirulus, Hemibelideus, Petauroides, Pseudochirops, Petropseudes). Pseudochirops and Pseudochirulus are the only genera with representatives on New Guinea and surrounding western islands. Here, we examine phylogenetic relationships among 13 of the 17 extant pseudocheirid species based on protein-coding portions of the ApoB, BRCA1, ENAM, IRBP, Rag1, and vWF genes. Maximum parsimony, maximum likelihood, and Bayesian methods were used to estimate phylogenetic relationships. Two different relaxed molecular clock methods were used to estimate divergence times. Bayesian and maximum parsimony methods were used to reconstruct ancestral character states for geographic provenance and maximum elevation occupied. We find robust support for the monophyly of Pseudocheirinae (Pseudochirulus + Pseudocheirus), Hemibelidinae (Hemibelideus + Petauroides), and Pseudochiropsinae (Pseudochirops + Petropseudes), respectively, and for an association of Pseudocheirinae and Hemibelidinae to the exclusion of Pseudochiropsinae. Within Pseudochiropsinae, Petropseudes grouped more closely with the New Guinean Pseudochirops spp. than with the Australian Pseudochirops archeri, rendering Pseudochirops paraphyletic. New Guinean species belonging to Pseudochirops are monophyletic, as are New Guinean species belonging to Pseudochirulus. Molecular dates and ancestral reconstructions of geographic provenance combine to suggest that the ancestors of extant New Guinean Pseudochirops spp. and Pseudochirulus spp. dispersed from Australia to New Guinea ∼12.1–6.5 Ma (Pseudochirops) and ∼6.0–2.4 Ma (Pseudochirulus). Ancestral state reconstructions support the hypothesis that occupation of high elevations (>3000 m) is a derived feature that evolved on the terminal branch leading to Pseudochirops cupreus, and either evolved in the ancestor of Pseudochirulus forbesi, Pseudochirulus mayeri, and Pseudochirulus caroli, with subsequent loss in P. caroli, or evolved independently in P. mayeri and P. forbesi. Divergence times within the New Guinean Pseudochirops clade are generally coincident with the uplift of the central cordillera and other highlands. Diversification within New Guinean Pseudochirulus occurred in the Plio-Pleistocene after the establishment of the Central Range and other highlands
Single mothering as experienced by Burundian refugees in Australia: a qualitative inquiry
HIV patients stable on ART retain evidence of a high CMV load but changes to Natural Killer cell phenotypes reflect both HIV and CMV
Background: Whilst ART corrects many effects of HIV disease, T cell populations retain features of accelerated immunological aging. Methods: Here we analyse phenotypic changes to natural killer (NK) cells in HIV patients who began ART with <200 CD4 T-cells/µl and maintained virological control for 12-17 years, compared with CMV seropositive and seronegative healthy control donors. Results: Humoral responses to CMV antigens (lysate, gB, IE-1) remain elevated in the patients (P <0.0001) despite the long duration of ART. Patient's NK cells responded poorly to K562 cells when assessed by CD107a and IFNγ, but this could not be attributed to CMV as responses were low in CMV-seronegative controls. Moreover HIV (and not CMV) increased expression of CD57 on CD56lo cells. Conclusions: Comparisons with published studies suggest that CMV accelerates age-related increases in CD57 expression but levels plateau by 60-70 years of age, so the effect of CMV disappears. In HIV patients the plateau is higher and perhaps reached sooner
Development, standardization and refinement of procedures for evaluating effects of endocrine active compounds on development and sexual differentiation of Xenopus laevis
Xenopus laevis has been introduced as a model to study effects of endocrine-active compounds (EAC) on development and sexual differentiation. However, variable and inconsistent data have raised questions about the reliability of the test methods applied. The current study was conducted in two laboratories to develop, refine, and standardize procedures and protocols. Larvae were exposed in flow-through systems to 17β-estradiol (E2), at concentrations from 0.2 to 6.0 μg E2 L−1 in Experiment 1A, and 0.015 to 2.0 μg E2 L−1 in Experiment 1B. In both studies survival (92%, 99%) and percentage of animals that completed metamorphosis (97%, 99%) indicated reproducible biological performance. Furthermore, minor variations in husbandry led to significant differences in snout-to-vent length, weight, and gonad size. In Experiment 1A, almost complete feminization occurred in all E2 treatment groups whereas a concentration response was observed in Experiment 1B resulting in an EC50 of 0.12 μg E2 L−1. The final verified protocol is suitable for determining effects of EAC on development and sexual differentiation in X. laevis
School's out: what are urban children doing? The Summer Activity Study of Somerville Youth (SASSY)
Background:
Research indicates that in the United States, children experience healthier BMI and fitness levels during school vs. summer, but research is limited. The primary goal of this pilot study was to assess where children spend their time during the months that school is not in session and to learn about the different types of activities they engage in within different care settings. A secondary goal of this pilot study was to learn what children eat during the summer months.
Methods:
A nine-week summer study of 57 parents of second and third grade students was conducted in an economically, racial/ethnically and linguistically diverse US urban city. Weekly telephone interviews queried time and activities spent on/in 1) the main caregiver’s care 2) someone else’s care 3) vacation 4) and camp. Activities were categorised as sedentary, light, moderate, or vigorous (0-3 scale). For each child, a mean activity level was calculated and weighted for proportion of time spent in each care situation, yielding a weighted activity index. On the last phone call, parents answered questions about their child’s diet over the summer. Two post-study focus groups were conducted to help interpret findings from the weekly activity interviews.
Results:
The mean activity index was 1.05 ± 0.32 and differed between gender (p = 0.07), education (p = 0.08) and primary language spoken in the household (p = 0.01). Children who spent a greater percentage of time in parent care had on average a lower activity index (β = -0.004, p = 0.01) while children who spent a greater percentage of time in camp had a higher activity index (β = 0.004, p = 0.03). When stratified into type of camp, percentage of time spent in active camp was also positively associated with mean activity index (β = 0.005, p =\u3c 0.001). With regards to diet, after adjusting for maternal education, children who attended less than five weeks of camp were four times more likely to eat their meals in front of the TV often/almost all of the time (OR = 4.0, 95%CI 1.0-16.2, p \u3c 0.06).
Conclusions:
Summer activities and some dietary behaviours are influenced by situation of care and sociodemographic characteristics. In particular, children who spend a greater proportion of time in structured environments appear to be more active. We believe that this pilot study is an important first step in our understanding of what children do during the summer months
The Quantitative Methods Boot Camp:Teaching Quantitative Thinking and Computing Skills to Graduate Students in the Life Sciences
<div><p>The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a “boot camp” in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students’ engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.</p></div
The Homeobox Transcription Factor Barx2 Regulates Plasticity of Young Primary Myofibers
Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation. Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative tool.We previously showed that the homeobox protein Barx2 promotes myoblast differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers. Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry. We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2.We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular switch controlling cell differentiation and proliferation
Mining for genotype-phenotype relations in Saccharomyces using partial least squares
<p>Abstract</p> <p>Background</p> <p>Multivariate approaches are important due to their versatility and applications in many fields as it provides decisive advantages over univariate analysis in many ways. Genome wide association studies are rapidly emerging, but approaches in hand pay less attention to multivariate relation between genotype and phenotype. We introduce a methodology based on a BLAST approach for extracting information from genomic sequences and Soft- Thresholding Partial Least Squares (ST-PLS) for mapping genotype-phenotype relations.</p> <p>Results</p> <p>Applying this methodology to an extensive data set for the model yeast <it>Saccharomyces cerevisiae</it>, we found that the relationship between genotype-phenotype involves surprisingly few genes in the sense that an overwhelmingly large fraction of the phenotypic variation can be explained by variation in less than 1% of the full gene reference set containing 5791 genes. These phenotype influencing genes were evolving 20% faster than non-influential genes and were unevenly distributed over cellular functions, with strong enrichments in functions such as cellular respiration and transposition. These genes were also enriched with known paralogs, stop codon variations and copy number variations, suggesting that such molecular adjustments have had a disproportionate influence on <it>Saccharomyces </it>yeasts recent adaptation to environmental changes in its ecological niche.</p> <p>Conclusions</p> <p>BLAST and PLS based multivariate approach derived results that adhere to the known yeast phylogeny and gene ontology and thus verify that the methodology extracts a set of fast evolving genes that capture the phylogeny of the yeast strains. The approach is worth pursuing, and future investigations should be made to improve the computations of genotype signals as well as variable selection procedure within the PLS framework.</p
- …
