1,797 research outputs found
The Herschel Exploitation of Local Galaxy Andromeda (HELGA) II: Dust and Gas in Andromeda
We present an analysis of the dust and gas in Andromeda, using Herschel
images sampling the entire far-infrared peak. We fit a modified-blackbody model
to ~4000 quasi-independent pixels with spatial resolution of ~140pc and find
that a variable dust-emissivity index (beta) is required to fit the data. We
find no significant long-wavelength excess above this model suggesting there is
no cold dust component. We show that the gas-to-dust ratio varies radially,
increasing from ~20 in the center to ~70 in the star-forming ring at 10kpc,
consistent with the metallicity gradient. In the 10kpc ring the average beta is
~1.9, in good agreement with values determined for the Milky Way (MW). However,
in contrast to the MW, we find significant radial variations in beta, which
increases from 1.9 at 10kpc to ~2.5 at a radius of 3.1kpc and then decreases to
1.7 in the center. The dust temperature is fairly constant in the 10kpc ring
(ranging from 17-20K), but increases strongly in the bulge to ~30K. Within
3.1kpc we find the dust temperature is highly correlated with the 3.6 micron
flux, suggesting the general stellar population in the bulge is the dominant
source of dust heating there. At larger radii, there is a weak correlation
between the star formation rate and dust temperature. We find no evidence for
'dark gas' in M31 in contrast to recent results for the MW. Finally, we
obtained an estimate of the CO X-factor by minimising the dispersion in the
gas-to-dust ratio, obtaining a value of (1.9+/-0.4)x10^20 cm^-2 [K kms^-1]^-1.Comment: 19 pages, 18 figures. Submitted to ApJ April 2012; Accepted July 201
Low genetic variability, female-biased dispersal and high movement rates in an urban population of Eurasian badgersMeles meles
1.
Urban and rural populations of animals can differ in their behaviour, both in order to meet their
ecological requirements and due to the constraints imposed by different environments. The study
of urban populations can therefore offer useful insights into the behavioural flexibility of a species as
a whole, as well as indicating how the species in question adapts to a specifically urban environment.
2.
The genetic structure of a population can provide information about social structure and
movement patterns that is difficult to obtain by other means. Using non-invasively collected hair
samples, we estimated the population size of Eurasian badgers
Meles meles
in the city of Brighton,
England, and calculated population-specific parameters of genetic variability and sex-specific rates
of outbreeding and dispersal.
3.
Population density was high in the context of badger densities reported throughout their range.
This was due to a high density of social groups rather than large numbers of individuals per group.
4.
The allelic richness of the population was low compared with other British populations. However,
the rate of extra-group paternity and the relatively frequent (mainly temporary) intergroup movements
suggest that, on a local scale, the population was outbred. Although members of both sexes visited
other groups, there was a trend for more females to make intergroup movements.
5.
The results reveal that urban badgers can achieve high densities and suggest that while some
population parameters are similar between urban and rural populations, the frequency of intergroup
movements is higher among urban badgers. In a wider context, these results demonstrate the
ability of non-invasive genetic sampling to provide information about the population density, social
structure and behaviour of urban wildlife
Galaxy Evolution and Star Formation Efficiency at 0.2 < z < 0.6
We present the results of a CO line survey of 30 galaxies at moderate
redshift (z \sim 0.2-0.6), with the IRAM 30m telescope, with the goal to follow
galaxy evolution and in particular the star formation efficiency (SFE) as
defined by the ratio between far-infrared luminosity and molecular gas mass
(LFIR/M(H2)). The sources are selected to be ultra-luminous infrared galaxies
(ULIRGs), with LFIR larger than 2.8 10^{12} Lsol, experiencing starbursts;
adopting a low ULIRG CO-to-H2 conversion factor, their gas consumption
time-scale is lower than 10^8 yr. To date only very few CO observations exist
in this redshift range that spans nearly 25% of the universe's age.
Considerable evolution of the star formation rate is already observed during
this period. 18 galaxies out of our sample of 30 are detected (of which 16 are
new detections), corresponding to a detection rate of 60%. The average CO
luminosity for the 18 galaxies detected is L'CO = 2 10^{10} K km/s pc^2,
corresponding to an average H2 mass of 1.6 10^{10} Msol. The FIR luminosity
correlates well with the CO luminosity, in agreement with the correlation found
for low and high redshift ULIRGs. Although the conversion factor between CO
luminosity and H2 mass is uncertain, we find that the maximum amount of gas
available for a single galaxy is quickly increasing as a function of redshift.
Using the same conversion factor, the SFEs for z\sim 0.2-0.6 ULIRGs are found
to be significantly higher, by a factor 3, than for local ULIRGs, and are
comparable to high redshift ones. We compare this evolution to the expected
cosmic H2 abundance and the cosmic star formation history.Comment: 11 pages, 13 figures, accepted in A&
The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths
We present the Planck Sky Model (PSM), a parametric model for the generation
of all-sky, few arcminute resolution maps of sky emission at submillimetre to
centimetre wavelengths, in both intensity and polarisation. Several options are
implemented to model the cosmic microwave background, Galactic diffuse emission
(synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II
regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic
Sunyaev-Zeldovich signals from clusters of galaxies. Each component is
simulated by means of educated interpolations/extrapolations of data sets
available at the time of the launch of the Planck mission, complemented by
state-of-the-art models of the emission. Distinctive features of the
simulations are: spatially varying spectral properties of synchrotron and dust;
different spectral parameters for each point source; modeling of the clustering
properties of extragalactic sources and of the power spectrum of fluctuations
in the cosmic infrared background. The PSM enables the production of random
realizations of the sky emission, constrained to match observational data
within their uncertainties, and is implemented in a software package that is
regularly updated with incoming information from observations. The model is
expected to serve as a useful tool for optimizing planned microwave and
sub-millimetre surveys and to test data processing and analysis pipelines. It
is, in particular, used for the development and validation of data analysis
pipelines within the planck collaboration. A version of the software that can
be used for simulating the observations for a variety of experiments is made
available on a dedicated website.Comment: 35 pages, 31 figure
Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming
BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information
Primary skin fibroblasts as a model of Parkinson's disease
Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues
Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy
clusters as obtained by Planck and by the ground-based interferometer, the
Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric
Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure
profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and
the scale radius (theta_500) of each cluster. Our resulting constraints in the
Y_500-theta_500 2D parameter space derived from the two instruments overlap
significantly for eight of the clusters, although, overall, there is a tendency
for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and
fainter than Planck. Significant discrepancies exist for the three remaining
clusters in the sample, namely A1413, A1914, and the newly-discovered Planck
cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the
Planck and AMI data is demonstrated through the use of detailed simulations,
which also discount confusion from residual point (radio) sources and from
diffuse astrophysical foregrounds as possible explanations for the
discrepancies found. For a subset of our cluster sample, we have investigated
the dependence of our results on the assumed pressure profile by repeating the
analysis adopting the best-fitting GNFW profile shape which best matches X-ray
observations. Adopting the best-fitting profile shape from the X-ray data does
not, in general, resolve the discrepancies found in this subset of five
clusters. Though based on a small sample, our results suggest that the adopted
GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal
We examine the relation between the galaxy cluster mass M and
Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for
which weak lensing (WL) mass measurements obtained from Subaru Telescope data
are available in the literature. Hydrostatic X-ray masses are derived from
XMM-Newton archive data and the SZ effect signal is measured from Planck
all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in
slope and normalisation with previous determinations using weak lensing masses;
however, there is a normalisation offset with respect to previous measures
based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect
measurements are in excellent agreement with previous determinations from
Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are
on average ~ 20 per cent larger than the corresponding weak lensing masses, at
odds with expectations. We show that the mass discrepancy is driven by a
difference in mass concentration as measured by the two methods, and, for the
present sample, the mass discrepancy and difference in mass concentration is
especially large for disturbed systems. The mass discrepancy is also linked to
the offset in centres used by the X-ray and weak lensing analyses, which again
is most important in disturbed systems. We outline several approaches that are
needed to help achieve convergence in cluster mass measurement with X-ray and
weak lensing observations.Comment: 19 pages, 9 figures, matches accepted versio
Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters
We present the final results from the XMM-Newton validation follow-up of new
Planck galaxy cluster candidates. We observed 15 new candidates, detected with
signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck
survey. The candidates were selected using ancillary data flags derived from
the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the
aim of pushing into the low SZ flux, high-z regime and testing RASS flags as
indicators of candidate reliability. 14 new clusters were detected by XMM,
including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6
clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We
discuss our results in the context of the full XMM validation programme, in
which 51 new clusters have been detected. This includes 4 double and 2 triple
systems, some of which are chance projections on the sky of clusters at
different z. We find that association with a RASS-BSC source is a robust
indicator of the reliability of a candidate, whereas association with a FSC
source does not guarantee that the SZ candidate is a bona fide cluster.
Nevertheless, most Planck clusters appear in RASS maps, with a significance
greater than 2 sigma being a good indication that the candidate is a real
cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4
arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this
level. The corresponding mass threshold depends on z. Systems with M500 > 5
10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected
clusters follow the YX-Y500 relation derived from X-ray selected samples.
Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray
luminosity on average for their mass. There is no indication of departure from
standard self-similar evolution in the X-ray versus SZ scaling properties.
(abridged)Comment: accepted by A&
- …
