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Abstract Parkinson's disease is the second most frequent
neurodegenerative disorder. While most cases occur sporadic
mutations in a growing number of genes including Parkin
(PARK2) and PINK1 (PARK6) have been associated with
the disease. Different animal models and cell models like
patient skin fibroblasts and recombinant cell lines can be used

as model systems for Parkinson's disease. Skin fibroblasts
present a system with defined mutations and the cumulative
cellular damage of the patients. PINK1 and Parkin genes show
relevant expression levels in human fibroblasts and since both
genes participate in stress response pathways, we believe
fibroblasts advantageous in order to assess, e.g. the effect of
stressors. Furthermore, since a bioenergetic deficit underlies
early stage Parkinson's disease, while atrophy underlies later
stages, the use of primary cells seems preferable over the use
of tumor cell lines. The new option to use fibroblast-derived
induced pluripotent stem cells redifferentiated into dopami-
nergic neurons is an additional benefit. However, the use of
fibroblast has also some drawbacks. We have investigated
PARK6 fibroblasts and they mirror closely the respiratory
alterations, the expression profiles, the mitochondrial dynam-
ics pathology and the vulnerability to proteasomal stress that
has been documented in other model systems. Fibroblasts
from patients with PARK2, PARK6, idiopathic Parkinson's
disease, Alzheimer's disease, and spinocerebellar ataxia type 2
demonstrated a distinct and unique mRNA expression pattern
of key genes in neurodegeneration. Thus, primary skin fibro-
blasts are a useful Parkinson's disease model, able to serve as a
complement to animal mutants, transformed cell lines and
patient tissues.
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Abbreviations
AD Alzheimer's disease
iPS Induced pluripotent stem cells
IPD Idiopathic Parkinson's disease
MEF Mouse embryonic fibroblasts
PINK1 PTEN-induced putative kinase 1
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PD Parkinson's disease
SA-beta-galactosidase Senescence-activated

beta-galactosidase
SCA2 Spinocerebellar ataxia type 2

Introduction

In Parkinson's disease (PD) research, past beliefs about a quite
exclusive affection of the dopaminergic nigrostriatal pathway
have been gradually superseded by neuropathological data on
sporadic PD patients; in particular, the recent documentation
of disease progression from gastrointestinal neurons via the
brainstem/olfactory bulb onto the higher cortical regions [1,
2]. At present, data from genetic PD variants clearly indicate
an early bioenergetic pathology also in extraneuronal tissues.
Thus, in the future, it may become possible to objectively
diagnose PD on the basis of a blood sample, saliva or a buccal
epithelial swab, or a skin biopsy. We have explored several
material sources and found primary skin fibroblast cultures a
recommendable approach.

Advantages and Disadvantages of Skin Fibroblasts
as an In Vitro Model of PD

The main advantages of using skin fibroblasts as an in vitro
model of PD are their availability and robustness. Further-
more, skin fibroblasts represent a model of primary human
cells, which comprise the chronological and biological aging
of the patients according to their polygenic predisposition and
environmental etiopathology.

Skin fibroblasts can be easily isolated from 2 mm punch
skin biopsies, a procedure, which does not need stitches and
has practically as few complications as a venous puncture.
Still, it should be performed by a dermatologist and is not a
routine measure in the management of PD patients, thus
requiring written consent and ethics commission approval.

The ensuing cell culture is a mixture of primary fibroblasts
and keratinocytes at the beginning of the culturing process and
a pure culture of fibroblasts is only achieved in the third
passage. However, the fibroblast population consists most
probably of a mixture of mitotic and postmitotic fibroblast
[3], thus contributing to a heterogeneous cell population even
at early passages. Furthermore, cells may be contaminated
with the frequent skin microorganism Mycoplasma, possibly
causing deprivation of nutrients, reduced growth, inflamma-
tory responses, and oxidative stress, which makes a periodic
testing for Mycoplasma necessary. Cell propagation, storage
of aliquots in liquid nitrogen, and transport are easy and
comparable to standard cell lines, so fibroblasts from patients
with sporadic PD or with defined mutations of PARK genes

can be obtained from numerous labs and several repositories
such as the Coriell Institute in New Jersey.

Since clonal selection and drift in culture are inherent fea-
tures of fibroblasts, the matching of fibroblasts from a sufficient
number of patients with their appropriate controls of similar age
and sex is always an inevitable difficulty. A possible measure to
adjust controls to the patient fibroblasts could be the correction
of diverting genes. Gene correction has been successfully ap-
plied to alter genes in induced pluripotent stem (iPS) cells [4]
and fibroblasts [5, 6]. However, the possibility of off-target
mutations is quite high, and a time-consuming prescreening
process is necessary to determine the genes needing alterations.

In view of the slow growth of primary cells from aged
individuals, it needs weeks in culture to generate sufficient
material for a number of biochemical tests. After some culti-
vation time, primary skin fibroblasts may be similar to mouse
embryonic fibroblasts (MEFs) which either transform sponta-
neously or reach replicative senescence, thus altering the
previously established phenotypes. Therefore, as with all
primary cell models, a careful documentation of culture
history, number of population doublings, and senescence
markers such as senescence-activated β-galactosidase (SA-β-
galactosidase) staining are indispensable quality controls. Fur-
thermore, control cells and patients fibroblast should have a
similar amount of population doublings when comparing
biochemical or genetic parameters. On the other hand, immor-
talization of fibroblasts can be regarded as an advantage since
immortalized cells proliferate faster than primary cells, thus
allowing a much higher cell yield, and characteristics induced
by in vitro aging can be disregarded. A study by Sprenger et
al. [7] comparing primary and immortalized fibroblasts shows
that both cell types are quite similar in the early passages
regarding “major cell lineage-specific characteristics” but
expression changes of genes and proteins involved in tran-
scription, cell cycle, receptor tyrosine kinase signaling cas-
cade, and in the regulation of the cytoskeleton have been
reported [7–11], indicating that the use of immortalized fibro-
blast for studies involving these pathways must be carefully
controlled, e.g., by including primary fibroblasts.

The advantages and disadvantages of primary skin fibro-
blasts as an extraneural disease model are well established
from previous research on Alzheimer's disease (AD), amyo-
trophic lateral sclerosis, Lesh–Nyhan syndrome, lysosomal
and mitochondrial disorders, and aging and are summarized
below based on previous reviews [12–15].

Arguments pro primary skin fibroblasts as a disease model

• Easy availability from patients and matched controls, academic labs,
cell repositories

• Robustness in culture, storage, and transport

• Mirror the polygenic risk factors of specific patients

• Reflect cumulative cell damage at the age of the patient

• Express most of the PARK genes at relevant levels
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• Make dynamic cell contacts, similar to neurons and in contrast to
most patient blood cells

• Can be reprogrammed to iPS cells and redifferentiated, e.g., to
dopaminergic neurons as a human neuronal in vitro model
of specific Parkinson variants

• As primary cells, they do not display maximal glycolysis (Warburg
effect) and the independence from trophic signals which are typical
of tumor cell lines

• Due to the homogenous cell differentiation, the signal-to-noise ratio
is for many analyses better than in complex tissues such as brain

• Fibroblasts are quite amenable to genetic manipulation via
electroporation or lentiviral constructs

• Human fibroblasts can be easily compared with mouse mutant
embryonal fibroblasts

Argumente contra primary skin fibroblasts as a disease model

• Pure fibroblast culture only after passage 3, possible mixture of
proliferating and postmitotic cells

• Population doubling time of patient and control fibroblasts must
be closely monitored

• Growth especially in older populations is slow

• Suboptimal matching of patient cells with control cells, variances
of seeding density, cell confluence and of substrate availability can
generate irreproducible results

• Contaminations with Mycoplasma are frequent and may lead to
artificial phenotypes

• Cells in culture have maximal trophic support, while neurons in vivo
have to compete for it

• Fibroblasts are quite resistant against most stressors

• Their gene expression profile and their signaling differ strongly from
neurons, e.g., the PD-associated gene alpha-synuclein is barely
expressed; the vesicle/receptor/ion channel control, which is highly
sophisticated in neurons is rather rudimentary in fibroblasts

Identification of Potential Biomarkers for Diagnostics
in Skin Fibroblasts

While patient skin fibroblasts can be obtained repeatedly with
ease and thus might be used even to monitor disease progres-
sion, it still remains unclear to what extent they will be helpful
to identify biomarkers for the diagnosis of predisposition and
manifestation of PD individuals at risk (state and trait markers).
The identification of objective molecular biomarkers for PD
has been attempted in blood, serum, plasma, urine, and cere-
brospinal fluid [16, 17]. To date, diagnosis of PD in hospital
routine is still made subjectively on the basis of the clinical
neurological examination and the response to specific drugs
such as levodopa. In vivo objective diagnosis is so far limited
to imaging investigations such as DATscan, which are not
completely specific for PD and become pathological only
around the time of clinical onset. The validation of diagnosis
still depends on postmortem brain histology. In the context of
skin fibroblasts, it is noteworthy that efforts to improve diag-
nostics of PD through chest skin biopsies yielded promising
preliminary results, detecting alpha-synuclein containing Lewy

neurites in a subset of cases, thus supporting the concept of PD
as a systemic disease [18–22].

We have investigated the expression profile of primary skin
fibroblasts with PINK1 (PARK6) and Parkin (PARK2) muta-
tions at the global transcriptome and proteome level before
generating and characterizing the appropriate mouse mutants
[23–25] and were surprised to find only few strong transcript
changes, but interestingly, the mRNAs of several other PARK
genes such as alpha-synuclein and Parkin were dysregulated
[23, 26]. However, due to the low expression of alpha-
synuclein in fibroblasts, these data could not be analyzed at
the protein level.

In an expansion of the fibroblast transcriptome analysis, the
mRNA expression of 24 genes with key roles in neurodegen-
eration, especially in familial and sporadic PD, was analyzed
in different fibroblast cultures. We compared fibroblasts of
PARK2, PARK6, and of idiopathic Parkinson's disease (IPD)
patients with fibroblasts from patients with familial and spo-
radic AD and spinocerebellar ataxia type 2 (SCA2). For nor-
malization, age-matched control fibroblasts were used. Each
fibroblast population demonstrated a unique expression profile
where only a few common transcript changes in the different
fibroblasts were observed (Table 1). Interestingly, expression
patterns of PD fibroblasts were more similar to each other than
to fibroblasts of AD and SCA2 patients. Furthermore, a distinct
separation can be made between the IPD patient fibroblasts and
the cultures of patients with familial PD. These data underline
evidently the specificity of human fibroblasts as diseasemodels.

In correlation with the transcript data described above,
almost no consistent proteome changes in 2D-DIGE gels
under culture conditions with maximal trophic support were
found (unpublished data). In contrast, our data show very
clear and consistent expression anomalies and mitochondrial
pathology under distinct deprivation conditions, probably due
to the fact that the function of PINK1 and Parkin is part of a
quality control pathway that becomes relevant only under
stress conditions [27–29].

Consequently, different groups have explored analyses in
media with only 5% fetal calf serum, with low glucose [30],
with galactose as carbon source [31], with rapamycin [32], in
the presence of proteasome inhibitors [26, 33], after adminis-
tration of complex I inhibitors or mitochondrial uncouplers
[34, 35], or even in time course experiments after complete
serum withdrawal [29]. The relevant stressors remain to be
elucidated, underlining the necessity to define culture condi-
tions that reliably mirror PD pathogenesis and are thus relevant
for biomarkers. Interestingly, differing resistance to the respi-
ratory chain complex I inhibitor rotenone characterizes skin
fibroblast lines from different animal species, while variations
in mitochondrial membrane potential are large in fibroblasts
even within the same species. These mitochondrial differences
correlate well with age within species and with life expectancy
across species and importantly depend on nuclear factors
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[36–38]. Overall, nuclear and mitochondrial, genetic, and
environmental factors contribute to the risk of PD. Therefore,
a panel with both sensitive and specific state and trait diag-
nostic biomarkers will have to be developed from in vitro and
in vivo approaches, on the basis of initial attempts in AD [39].
Also, it remains to be determined which biomarkers reflect
progression and treatment response.

Mechanistic Insights into PD Pathogenesis from Skin
Fibroblasts

Observations that skin fibroblasts from sporadic PD patients
show reduced respiratory complex I activity, pyruvate utili-
zation, ATP generation, mitochondrial membrane potential,
and increased lipid peroxidation similar to affected brain

Table 1 Distinct expression profiles of patient fibroblasts

Gene Expression assay PARK2 PARK6 IPD AD SCA2

Monogenic recessive Parkinsonism genes

PARKIN Hs01038318_m1 0.41±0.10** –b, ** 0.39±0.08* – –

PINK1 Hs00260868_m1 1.33±0.09** – – – –

ATP13A2 Hs00223032_m1 – 1.33±0.07* 1.80±0.02*** – –

PLA2G6 Hs00185926_m1 – 0.54±0.04** 0.39±0.06** – –

FBXO7 Hs00201825_m1 – 0.79±0.03* 0.75±0.03** 0.82±0.02* 1.23±0.06*

DJ-1 Hs00697109_m1 – – – – –

Monogenic dominant Parkinsonism genes

SNCA Hs00240906_m1 n.d. –*, a –
a

–
a n.d.

LRRK2 Hs00411197_m1 0.66±0.08* 0.25±0.03*** – – 2.10±0.34*

Other monogenic Parkinsonism genes

EIF4G1 Hs00191933_m1 – – 1.66±0.08* 1.73±0.15** –

OMI/HTRA2 Hs00234883_m1 – – 1.32±0.03* – –

VPS35 Hs00372497_m1 – – – – –

UCHL1 Hs00188233_m1 – – – – –

GIGYF2 Hs01084510_m1 – – – – –

GWAS candidate Parkinsonism genesc

GAK Hs01049227_m1 – – 1.45±0.15* – –

SYT11 Hs01064643_m1 – – 0.53±0.04* – –

BST1 Hs01070189_m1 – – – – –

HIP1R Hs00391321_m1 – – – – –

STK39 Hs01085346_m1 – – – – –

Other neurodegenerative disease genes

MAPT Hs00902194_m1 – – 0.16±0.04* – –

BACE1 Hs01121199_m1 – 0.87±0.04* 1.19±0.06* 1.39±0.15* –

GBA Hs00164683_m1 – – – – –

ATXN2 Hs00268077_m1 – – – – –

ATXN3 Hs01026447_m1 – – – – –

TARDBP Hs00606522_m1 – – – – –

The mRNA expression of the indicated genes with key roles in neurodegeneration, especially in PD, was analyzed in fibroblasts of PARK2, PARK6, and
IPD patients and compared to fibroblasts of AD and SCA2 patients and normalized to age-matched controls. A unique expression pattern for each
fibroblasts culture is visible, whereas the PD fibroblasts demonstrate clearly a different expression pattern in comparison to the AD and SCA2 fibroblasts.
Analysis of mRNA levels between control and disease fibroblast cultures was performed by qPCR using TaqMan gene expression assays (Applied
Biosystems, Darmstadt, Germany). Statistics were carried out by unpaired t test between fold changes of controls (n04) and the respective disease cultures

PARK2 familial Parkinson's disease—V56E/C212Y-PARKIN (Hoenicka et al. [75]), n03; PARK6 familial Parkinson's disease—G309D-PINK1
(Hoepken et al. 2007 [47]), n03; IPD idiopathic Parkinson's disease, n04; AD Alzheimer's disease (familial, n02; sporadic, n02); SCA2
spinocerebellar ataxia type 2, n04; GWAS genome-wide association study (ACMSD, HLA-DRB, and LAMP3 were not detectable in fibroblasts);
n.d. not determined

*P≤0.05, **P≤0.01, ***P≤0.001
a Hoepken et al. [23]
b Klinkenberg et al. [26]
c Genome-wide association study (ACMSD, HLA-DRB, and LAMP3 were not detectable in fibroblasts)
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tissue were already made more than 20 years ago and were
among the early evidence that the bioenergetic deficit typi-
cal of PD is not restricted to degenerating dopaminergic
midbrain neurons, but an early systemic feature [40–44].
We have used skin fibroblasts successfully to rescue this
bioenergetic deficit by pharmacological administration of
CoQ(10) in approximately half of the cultures studied [45].

PARK6 patient skin fibroblasts represent a useful disease
model as judged by their consistent respiratory deficit, altered
mitochondrial morphology, increased oxidative stress, apoptosis
vulnerability, and dysregulated expression of other PARK genes
[23, 26, 30, 33, 46–50]. The analysis of PARK6 fibroblasts also
contributed to the insight that PINK1 loss-of-function can be
rescued by Parkin [30, 51], placing both proteins within a
common pathway where stress-stabilized PINK1 acts upstream
and regulates the stress-triggered mitochondrial translocation
and degradation of Parkin.

In PARK2 patient skin fibroblasts with Parkin loss-of-
function mutations, again a bioenergetic deficit with altered
expression of nuclear-encoded mitochondrial proteins was
documented. In addition, an enhanced mitochondrial vulner-
ability to DNA damage together with enhanced levels and
activity of the DNA repair protein p53, as well as changes in
the MAP kinase pathway and microtubule polymerization
were observed [52–56].

In Parkin research, investigators only rarely resort to the
transformedmurine fibroblast cell line NIH3T3with a specific
knockdown as disease model [57, 58]; MEFs are unsuitable as
model since they do not express Parkin. Due to the rarity of
patients, the use of MEFs has become much more widespread
in PARK7 research, documenting the DJ-1 loss-of-function to
result in vulnerability to oxidative stress and in a loss of the
transcription factor Nrf2. The data also indicated a cytopro-
tective role for the binding of DJ-1 to the apoptosis signal-
regulating kinase 1 and an essential role of DJ-1 as oncogene
on the upregulation of c-Myc [59–62]. Thus, at least for the
autosomal recessive PD variants, the use of patient skin fibro-
blasts and of mouse mutant embryonal fibroblasts has quite
faithfully modeled the known disease features and generated
substantial mechanistic insights.

The Use of Skin Fibroblasts for Transplantation
and Reprogramming

Skin fibroblasts have been the basic tool for numerous PD
treatment research efforts, which tested the benefit of retro-
viruses in mediating selective gene transfer and which
assessed the benefit of reimplantation of genetically modified
cells into brains with Parkinsonian neurodegeneration. Dopa-
mine neurotransmission enzymes such as TH, GTPCHI,
AADC, and VMAT2 and trophic factors such as GDNF and
BDNF were successfully engineered into fibroblasts [63, 64].

Transplantation of such cells into neurotoxin rodent models of
PD results in promising beneficial effects on the biochemical
and behavior profile [65–68].

Great promise is now derived from recent achievements in
the field where mouse and PD patient fibroblasts were reprog-
rammed into adult iPS cells [69, 70], which can be rediffer-
entiated into neuronal cells with dopaminergic characteristics
[71, 72], and can be integrated successfully into the fetal brain
with a beneficial effect on symptoms of the neurotoxic rat PD
model [73]. Efforts are now underway to rescue the autosomal
recessive PD variants in the skin fibroblast model and use the
derived dopaminergic neurons as material for the identification
of biomarkers and mechanistic insights. Since iPS-derived
cells may be genomically unstable [74], it remains unclear to
what extent they might be useful for future transplantation
trials in patients. Furthermore, candidate disease phenotypes
observed in iPS-derived cells will have to be validated in
tissues or primary cells from patients.

In conclusion, we regard skin fibroblasts as a useful and
promising complement to the better established analyses of
patient or mouse mutant tissues and to the widespread use of
transfected tumor cell lines. Therefore, we would like to
encourage academically interested clinicians to obtain skin
biopsies from interesting PD patients and their relatives to
make them available internationally for academic research.
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