4,228 research outputs found

    Material research in microgravity

    Get PDF
    A popular discussion is given of microgravity effects in engineering and medicine gained from Skylab experience. Areas covered include crystal growing, liquid surface properties, diffusion, ferromagnetism, and emulsions

    Characterization and Control of Quantum Spin Chains and Rings

    Get PDF
    Information flow in quantum spin networks is considered. Two types of control -- temporal bang-bang switching control and control by varying spatial degrees of freedom -- are explored and shown to be effective in speeding up information transfer and increasing transfer fidelities. The control is model-based and therefore relies on accurate knowledge of the system parameters. An efficient protocol for simultaneous identification of the coupling strength and the exact number of spins in a chain is presented.Comment: to appear in ISCCSP 201

    Microscopic measurement of photon echo formation in groups of individual excitonic transitions

    Get PDF
    The third-order polarization emitted from groups of individual localized excitonic transitions after pulsed optical excitation is measured. We observe the evolution of the nonlinear response from the case of a free polarization decay for a single transition, to that of a photon echo for many transitions. The echo is shown to arise from the mutual rephasing of the emission from individual transitions

    Realistic heterointerfaces model for excitonic states in growth-interrupted quantum wells

    Full text link
    We present a model for the disorder of the heterointerfaces in GaAs quantum wells including long-range components like monolayer island formation induced by the surface diffusion during the epitaxial growth process. Taking into account both interfaces, a disorder potential for the exciton motion in the quantum well plane is derived. The excitonic optical properties are calculated using either a time-propagation of the excitonic polarization with a phenomenological dephasing, or a full exciton eigenstate model including microscopic radiative decay and phonon scattering rates. While the results of the two methods are generally similar, the eigenstate model does predict a distribution of dephasing rates and a somewhat modified spectral response. Comparing the results with measured absorption and resonant Rayleigh scattering in GaAs/AlAs quantum wells subjected to growth interrupts, their specific disorder parameters like correlation lengths and interface flatness are determined. We find that the long-range disorder in the two heterointerfaces is highly correlated, having rather similar average in-plane correlation lengths of about 60 and 90 nm. The distribution of dephasing rates observed in the experiment is in agreement with the results of the eigenstate model. Finally, we simulate highly spatially resolved optical experiments resolving individual exciton states in the deduced interface structure.Comment: To appear in Physical Review

    Exact mode volume and Purcell factor of open optical systems

    Get PDF
    The Purcell factor quantifies the change of the radiative decay of a dipole in an electromagnetic environment relative to free space. Designing this factor is at the heart of photonics technology, striving to develop ever smaller or less lossy optical resonators. The Purcell factor can be expressed using the electromagnetic eigenmodes of the resonators, introducing the notion of a mode volume for each mode. This approach allows to use an analytic treatment, consisting only of sums over eigenmode resonances, a so-called spectral representation. We show in the present work that the expressions for the mode volumes known and used in literature are only approximately valid for modes of high quality factor, while in general they are incorrect. We rectify this issue, introducing the exact normalization of modes. We present an analytic theory of the Purcell effect based on the exact mode normalization and resulting effective mode volume. We use a homogeneous dielectric sphere in vacuum, which is analytically solvable, to exemplify these findings.Comment: Letter: 5 pages, 2 figures. Supplementary material: 16 pages, 10 figure

    Femtosecond phase-resolved microscopy of plasmon dynamics in individual gold nanospheres

    Full text link
    The selective optical detection of individual metallic nanoparticles (NPs) with high spatial and temporal resolution is a challenging endeavour, yet is key to the understanding of their optical response and their exploitation in applications from miniaturised optoelectronics and sensors to medical diagnostics and therapeutics. However, only few reports on ultrafast pump-probe spectroscopy on single small metallic NPs are available to date. Here, we demonstrate a novel phase-sensitive four-wave mixing (FWM) microscopy in heterodyne detection to resolve for the first time the ultrafast changes of real and imaginary part of the dielectric function of single small (<40nm) spherical gold NPs. The results are quantitatively described via the transient electron temperature and density in gold considering both intraband and interband transitions at the surface plasmon resonance. This novel microscopy technique enables background-free detection of the complex susceptibility change even in highly scattering environments and can be readily applied to any metal nanostructure

    Polarization-resolved extinction and scattering cross-section of individual gold nanoparticles measured by wide-field microscopy on a large ensemble

    Get PDF
    We report a simple, rapid, and quantitative wide-field technique to measure the optical extinction σext\sigma_{\rm ext} and scattering σsca\sigma_{\rm sca} cross-section of single nanoparticles using wide-field microscopy enabling simultaneous acquisition of hundreds of nanoparticles for statistical analysis. As a proof of principle, we measured nominally spherical gold nanoparticles of 40\,nm and 100\,nm diameter and found mean values and standard deviations of σext\sigma_{\rm ext} and σsca\sigma_{\rm sca} consistent with previous literature. Switching from unpolarized to linearly polarized excitation, we measured σext\sigma_{\rm ext} as a function of the polarization direction, and used it to characterize the asphericity of the nanoparticles. The method can be implemented cost-effectively on any conventional wide-field microscope and is applicable to any nanoparticles
    • …
    corecore