234 research outputs found

    ROCker Models for Reliable Detection and Typing of Short-Read Sequences Carrying beta-Lactamase Genes

    Get PDF
    Identification of genes encoding beta-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 x precision x recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla. Application of these BL ROCker models to metagenomics, metatranscriptomics, and high-throughput PCR gene amplicon data should facilitate the reliable detection and quantification of BL variants encoded by environmental or clinical isolates and microbiomes and more accurate assessment of the associated public health risk, compared to the current practice. IMPORTANCE Resistance genes encoding beta-lactamases (BLs) confer resistance to the widely prescribed antibiotic class beta-lactams. Therefore, it is important to assess the prevalence of BL genes in clinical or environmental samples for monitoring the spreading of these genes into pathogens and estimating public health risk. However, detecting BLs in short-read sequence data is technically challenging. Our ROCker model-based bioinformatics approach showcases the reliable detection and typing of BLs in complex data sets and thus contributes toward solving an important problem in antibiotic resistance surveillance. The ROCker models developed substantially expand the toolbox for monitoring antibiotic resistance in clinical or environmental settings

    PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope

    Get PDF
    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope discovered a rapid (about 5 days duration), high-energy (E >100 MeV) gamma-ray outburst from a source identified with the blazar PKS 1502+106 (OR 103, S3 1502+10, z=1.839) starting on August 05, 2008 and followed by bright and variable flux over the next few months. Results on the gamma-ray localization and identification, as well as spectral and temporal behavior during the first months of the Fermi all-sky survey are reported here in conjunction with a multi-waveband characterization as a result of one of the first Fermi multi-frequency campaigns. The campaign included a Swift ToO (followed up by 16-day observations on August 07-22, MJD 54685-54700), VLBA (within the MOJAVE program), Owens Valley (OVRO) 40m, Effelsberg-100m, Metsahovi-14m, RATAN-600 and Kanata-Hiroshima radio/optical observations. Results from the analysis of archival observations by INTEGRAL, XMM-Newton and Spitzer space telescopes are reported for a more complete picture of this new gamma-ray blazar.Comment: 17 pages, 11 figures, accepted for The Astrophysical Journa

    Mitochondria of the Yeasts Saccharomyces cerevisiae and Kluyveromyces lactis Contain Nuclear rDNA-Encoded Proteins

    Get PDF
    In eukaryotes, the nuclear ribosomal DNA (rDNA) is the source of the structural 18S, 5.8S and 25S rRNAs. In hemiascomycetous yeasts, the 25S rDNA sequence was described to lodge an antisense open reading frame (ORF) named TAR1 for Transcript Antisense to Ribosomal RNA. Here, we present the first immuno-detection and sub-cellular localization of the authentic product of this atypical yeast gene. Using specific antibodies against the predicted amino-acid sequence of the Saccharomyces cerevisiae TAR1 product, we detected the endogenous Tar1p polypeptides in S. cerevisiae (Sc) and Kluyveromyces lactis (Kl) species and found that both proteins localize to mitochondria. Protease and carbonate treatments of purified mitochondria further revealed that endogenous Sc Tar1p protein sub-localizes in the inner membrane in a Nin-Cout topology. Plasmid-versions of 5â€Č end or 3â€Č end truncated TAR1 ORF were used to demonstrate that neither the N-terminus nor the C-terminus of Sc Tar1p were required for its localization. Also, Tar1p is a presequence-less protein. Endogenous Sc Tar1p was found to be a low abundant protein, which is expressed in fermentable and non-fermentable growth conditions. Endogenous Sc TAR1 transcripts were also found low abundant and consistently 5â€Č flanking regions of TAR1 ORF exhibit modest promoter activity when assayed in a luciferase-reporter system. Using rapid amplification of cDNA ends (RACE) PCR, we also determined that endogenous Sc TAR1 transcripts possess heterogeneous 5â€Č and 3â€Č ends probably reflecting the complex expression of a gene embedded in actively transcribed rDNA sequence. Altogether, our results definitively ascertain that the antisense yeast gene TAR1 constitutes a functional transcription unit within the nuclear rDNA repeats

    Disruption of AP1S1, Causing a Novel Neurocutaneous Syndrome, Perturbs Development of the Skin and Spinal Cord

    Get PDF
    Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit σ1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord

    Tremor in multiple sclerosis

    Get PDF
    Tremor is estimated to occur in about 25 to 60 percent of patients with multiple sclerosis (MS). This symptom, which can be severely disabling and embarrassing for patients, is difficult to manage. Isoniazid in high doses, carbamazepine, propranolol and gluthetimide have been reported to provide some relief, but published evidence of effectiveness is very limited. Most trials were of small size and of short duration. Cannabinoids appear ineffective. Tremor reduction can be obtained with stereotactic thalamotomy or thalamic stimulation. However, the studies were small and information on long-term functional outcome is scarce. Physiotherapy, tremor reducing orthoses, and limb cooling can achieve some functional improvement. Tremor in MS remains a significant challenge and unmet need, requiring further basic and clinical research

    Systems microscopy approaches to understand cancer cell migration and metastasis

    Get PDF
    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star

    Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a Z/γ ∗ boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vectorboson- fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb−1 of proton–proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    • 

    corecore