54 research outputs found

    ALMA constraints on star-forming gas in a prototypical z=1.5 clumpy galaxy: the dearth of CO(5-4) emission from UV-bright clumps

    Get PDF
    We present deep ALMA CO(5-4) observations of a main sequence, clumpy galaxy at z = 1.5 in the HUDF. Thanks to the ∼0.500 resolution of the ALMA data, we can link stellar population properties to the CO(5-4) emission on scales of a few kpc. We detect strong CO(5-4) emission from the nuclear region of the galaxy, consistent with the observed LIR–L 0 CO(5−4) correlation and indicating on-going nuclear star formation. The CO(5-4) gas component appears more concentrated than other star formation tracers or the dust distribution in this galaxy. We discuss possible implications of this difference in terms of star formation efficiency and mass build-up at the galaxy centre. Conversely, we do not detect any CO(5-4) emission from the UV-bright clumps. This might imply that clumps have a high star formation efficiency (although they do not display unusually high specific star formation rates) and are not entirely gas dominated, with gas fractions no larger than that of their host galaxy (∼50%). Stellar feedback and disk instability torques funnelling gas towards the galaxy centre could contribute to the relatively low gas content. Alternatively, clumps could fall in a more standard star formation efficiency regime if their actual star-formation rates are lower than generally assumed. We find that clump star-formation rates derived with several different, plausible methods can vary by up to an order of magnitude. The lowest estimates would be compatible with a CO(5-4) non-detection even for main-sequence like values of star formation efficiency and gas content

    A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi

    Get PDF
    We present a study of molecular gas in the inner disk (r ∼ 0.4± 0.1 au; {r(narrow,H₂)} ∼ 3± 2 au). The 4.7 μm ¹²CO emission lines are also well fit by two-component profiles ( {{r}broad,CO} =0.4± 0.1 au; {{r}narrow,CO} =15± 2 au). We combine these results with 10 μm observations to form a picture of gapped structure within the mm-imaged dust cavity, providing the first such overview of the inner regions of a young disk. The HST SED of RY Lupi is available online for use in modeling efforts

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of \sim1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2^2 at a luminosity distance of 408+840^{+8}_{-8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at \sim40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over \sim10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position \sim9 and \sim16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged

    AB Aurigae::Possible evidence of planet formation through the gravitational instability

    Get PDF
    Recent observations of the protoplanetary disc surrounding AB Aurigae have revealed the possible presence of two giant planets in the process of forming. The young measured age of 141-4Myr for this system allows us to place strict time constraints on the formation histories of the observed planets. Hence we may be able to make a crucial distinction between formation through core accretion (CA) or the gravitational instability (GI), as CA formation timescales are typically Myrs whilst formation through GI will occur within the first 104105\approx10^4-10^5yrs of disc evolution. We focus our analysis on the 4134-13MJup_{\rm Jup} planet observed at R30R\approx30AU. We find CA formation timescales for such a massive planet typically exceed the system's age. The planet's high mass and wide orbit may instead be indicative of formation through GI. We use smoothed particle hydrodynamic simulations to determine the system's critical disc mass for fragmentation, finding Md,crit=0.3M_{\rm d,crit}=0.3M_{\odot}. Viscous evolution models of the disc's mass history indicate that it was likely massive enough to exceed Md,critM_{\rm d,crit} in the recent past, thus it is possible that a young AB Aurigae disc may have fragmented to form multiple giant gaseous protoplanets. Calculations of the Jeans mass in an AB Aurigae-like disc find that fragments may initially form with masses 1.613.31.6-13.3MJup_{\rm Jup}, consistent with the planets which have been observed. We therefore propose that the inferred planets in the disc surrounding AB Aurigae may be evidence of planet formation through GI.Comment: 12 pages, 5 figure

    The Longitudinal Aging Study Amsterdam: cohort update 2016 and major findings

    Full text link
    corecore