220 research outputs found

    Barbed suture vs conventional tenorrhaphy: biomechanical analysis in an animal model.

    Get PDF
    BACKGROUND: The advantages of barbed suture for tendon repair could be to eliminate the need for a knot and to better distribute the load throughout the tendon so as to reduce the deformation at the repair site. The purpose of this study was to evaluate the breaking force and the repair site deformation of a new barbed tenorrhaphy technique in an animal model. MATERIALS AND METHODS: Sixty porcine flexor tendons were divided randomly into three groups and repaired with one of the following techniques: a new 4-strand barbed technique using 2/0 polypropylene Quill™ SRS or 2/0 polydioxanone Quill™ SRS and a modified Kessler technique using 3/0 prolene. All tendons underwent mechanical testing to assess the 2-mm gap formation force, the breaking force and the mode of failure. The percentage change in tendon cross-sectional area before and after repair was calculated. RESULTS: The two-sample Student t-test demonstrated a significant increase in 2-mm gap formation force and in breaking force with barbed sutures, independently from suture material, when compared to traditional Kessler suture. Concerning the tendon profile, we registered less bunching at the repair site in the two barbed groups compared with the Kessler group. CONCLUSIONS: This study confirms the promising results achieved in previous ex vivo studies about the use of barbed suture in flexor tendon repair. In our animal model, tenorrhaphy with Quill™ SRS suture guarantees a breaking force of repair that exceeds the 40-50 N suggested as sufficient to initiate early active motion, and a smoother profile at the repair site. LEVEL OF EVIDENCE: Not applicable

    Active commuting to and from university, obesity and metabolic syndrome among Colombian university students

    Get PDF
    Background: There is limited evidence concerning how active commuting (AC) is associated with health benefits in young. The aim of the study was to analyze the relationship between AC to and from campus (walking) and obesity and metabolic syndrome (MetS) in a sample of Colombian university students. Methods: A total of 784 university students (78.6% women, mean age = 20.1 ± 2.6 years old) participated in the study. The exposure variable was categorized into AC (active walker to campus) and non-AC (non/infrequent active walker to campus: car, motorcycle, or bus) to and from the university on a typical day. MetS was defined in accordance with the updated harmonized criteria of the International Diabetes Federation criteria. Results: The overall prevalence of MetS was 8.7%, and it was higher in non-AC than AC to campus. The percentage of AC was 65.3%. The commuting distances in this AC from/to university were 83.1%, 13.4% and 3.5% for < 2 km, 2- 5 km and > 5 km, respectively. Multiple logistic regressions for predicting unhealthy profile showed that male walking commuters had a lower probability of having obesity [OR = 0.45 (CI 95% 0.25–0.93)], high blood pressure [OR = 0.26 (CI 95% 0.13–0.55)] and low HDL cholesterol [OR = 0.29 (CI 95% 0.14–0.59)] than did passive commuters. Conclusions: Our results suggest that in young adulthood, a key life-stage for the development of obesity and MetS, AC could be associated with and increasing of daily physical activity levels, thereby promoting better cardiometabolic health.This study was part of the project entitled “Body Adiposity Index and Biomarkers of Endothelial and Cardiovascular Health in Adults”, which was funded by Centre for Studies on Measurement of Physical Activity, School of Medicine and Health Sciences, Universidad del Rosario (Code N° FIUR DNBG001) and Universidad de Boyacá (Code N° RECT 60)

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Altered processing of sensory stimuli in patients with migraine

    Get PDF
    Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore