72 research outputs found

    Onboard multichannel demultiplexer/demodulator

    Get PDF
    An investigation performed for NASA LeRC by COMSAT Labs, of a digitally implemented on-board demultiplexer/demodulator able to process a mix of uplink carriers of differing bandwidths and center frequencies and programmable in orbit to accommodate variations in traffic flow is reported. The processor accepts high speed samples of the signal carried in a wideband satellite transponder channel, processes these as a composite to determine the signal spectrum, filters the result into individual channels that carry modulated carriers and demodulate these to recover their digital baseband content. The processor is implemented by using forward and inverse pipeline Fast Fourier Transformation techniques. The recovered carriers are then demodulated using a single digitally implemented demodulator that processes all of the modulated carriers. The effort has determined the feasibility of the concept with multiple TDMA carriers, identified critical path technologies, and assessed the potential of developing these technologies to a level capable of supporting a practical, cost effective on-board implementation. The result is a flexible, high speed, digitally implemented Fast Fourier Transform (FFT) bulk demultiplexer/demodulator

    On-board processing satellite network architecture and control study

    Get PDF
    For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model

    On-board processing satellite network architecture and control study

    Get PDF
    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented

    Faster than Fiber: Advantages and Challenges of Leo Communications Satellite Systems

    Get PDF
    Low Earth Orbit (LEO) communications satellite systems are emerging as attractive alternatives to the Geostationary Earth Orbit (GEO) systems. GEO satellites have largely dominated the commercial and government communications satellite systems for telecommunications services since the early 1960's. A principal driver behind the move to LEO satellites is the competition to long propagation delay geostationary orbit satellite systems created by rapid expansion of short propagation delay terrestrial land and undersea fiber optic cable links for national and global connectivity. Communication paths over LEO satellites can have shorter propagation delay than terrestrial fiber. This because the speed of electromagnetic wave propagation via LEO satellites is 50% greater than that of light in fiber optic cable. This fact eliminates the long propagation delay property that has become synonymous with GEO communications satellite system. Other drivers are the use of small portable and hand-held earth terminals and the promise of low launch cost of small satellites to low earth orbits. The paper expands on the properties that promise to make LEO communications satellite systems the choice of the future

    Satellites in the National Information Infrastructure

    Get PDF
    The public discussion on the National Information Infrastructure (NII) has bee wide ranging and lacking in consensus as to the nature of the proposed NII itself. This paper in acknowledgment of the national policy origins of the NII debate begins with relevant remarks by President Clinton in his State of the Union Address. It defines an initial working definition of the NII based on the President's challenge. It then provides some clarification to the discussion in terms of planning horizon, subscriber transport services and transport media. The working definition is further developed to incorporate the type of traffic the NII will be expected to support following a discussion of an emerging desktop computing imperative. From this implications are drawn as to the feasibility of the so called fiber solution and an argument made that in the evolution of the current infrastructure to the future NII satellites offer the best solution for a timely manifestation of the vision

    Hybrid Network Architectures; A Framework for Comparative Analysis

    Get PDF
    The Global Information Infrastructure of the future will include a great variety of heterogeneous, seamlessly interconnected networks. There are strong variety of heterogeneous, seamlessly interconnected networks. There are strong technical and economic reasons predicating the emergence of these hybrid networks which will include many diverse terrestrial (tethered or wireless) and satellite networks in an interoperating configuration. This paper critically analyzes the basis for these new architectures and examines the various possibilities that will emerge in various phases in the future. A summary view is presented for these emerging hybrid architectures, the alternative components and subsystems available and the trade-offs that must be considered. The role of satellites is carefully analyzed and several conclusions are drawn. This paper will present a summary of the work and views of the Center for Satellite and Hybrid Communication Networks todate, in this important area. Specific design and performance evaluation tools being developed will also be described

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore