66 research outputs found
The hot and cold interstellar matter of early type galaxies and their radio emission
Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths
The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos
The interior structure of the Sun can be studied with great accuracy using
observations of its oscillations, similar to seismology of the Earth. Precise
agreement between helioseismological measurements and predictions of
theoretical solar models has been a triumph of modern astrophysics (Bahcall et
al. 2005). However, a recent downward revision by 25-35% of the solar
abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has
broken this accordance: models adopting the new abundances incorrectly predict
the depth of the convection zone, the depth profiles of sound speed and
density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The
discrepancies are far beyond the uncertainties in either the data or the model
predictions (Bahcall et al. 2005b). Here we report on neon abundances relative
to oxygen measured in a sample of nearby solar-like stars from their X-ray
spectra. They are all very similar and substantially larger than the recently
revised solar value. The neon abundance in the Sun is quite poorly determined.
If the Ne/O abundance in these stars is adopted for the Sun the models are
brought back into agreement with helioseismology measurements (Antia Basu 2005,
Bahcall et al. 2005c).Comment: 13 pages, 3 Figure
Primordial Black Holes: sirens of the early Universe
Primordial Black Holes (PBHs) are, typically light, black holes which can
form in the early Universe. There are a number of formation mechanisms,
including the collapse of large density perturbations, cosmic string loops and
bubble collisions. The number of PBHs formed is tightly constrained by the
consequences of their evaporation and their lensing and dynamical effects.
Therefore PBHs are a powerful probe of the physics of the early Universe, in
particular models of inflation. They are also a potential cold dark matter
candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X.
Calmet (Springer, 2014
A population-based study of ambulatory and surgical services provided by orthopaedic surgeons for musculoskeletal conditions
<p>Abstract</p> <p>Background</p> <p>The ongoing process of population aging is associated with an increase in prevalence of musculoskeletal conditions with a concomitant increase in the demand of orthopaedic services. Shortages of orthopaedic services have been documented in Canada and elsewhere. This population-based study describes the number of patients seen by orthopaedic surgeons in office and hospital settings to set the scene for the development of strategies that could maximize the availability of orthopaedic resources.</p> <p>Methods</p> <p>Administrative data from the Ontario Health Insurance Plan and Canadian Institute for Health Information hospital separation databases for the 2005/06 fiscal year were used to identify individuals accessing orthopaedic services in Ontario, Canada. The number of patients with encounters with orthopaedic surgeons, the number of encounters and the number of surgeries carried out by orthopaedic surgeons were estimated according to condition groups, service location, patient's age and sex.</p> <p>Results</p> <p>In 2005/06, over 520,000 Ontarians (41 per 1,000 population) had over 1.3 million encounters with orthopaedic surgeons. Of those 86% were ambulatory encounters and 14% were in hospital encounters. The majority of ambulatory encounters were for an injury or related condition (44%) followed by arthritis and related conditions (37%). Osteoarthritis accounted for 16% of all ambulatory encounters. Orthopaedic surgeons carried out over 140,000 surgeries in 2005/06: joint replacement accounted for 25% of all orthopaedic surgeries, whereas closed repair accounted for 16% and reductions accounted for 21%. Half of the orthopaedic surgeries were for arthritis and related conditions.</p> <p>Conclusion</p> <p>The large volume of ambulatory care points to the significant contribution of orthopaedic surgeons to the medical management of chronic musculoskeletal conditions including arthritis and injuries. The findings highlight that surgery is only one component of the work of orthopaedic surgeons in the management of these conditions. Policy makers and orthopaedic surgeons need to be creative in developing strategies to accommodate the growing workload of orthopaedic surgeons without sacrificing quality of care of patients with musculoskeletal conditions.</p
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Self-force: Computational Strategies
Building on substantial foundational progress in understanding the effect of
a small body's self-field on its own motion, the past 15 years has seen the
emergence of several strategies for explicitly computing self-field corrections
to the equations of motion of a small, point-like charge. These approaches
broadly fall into three categories: (i) mode-sum regularization, (ii) effective
source approaches and (iii) worldline convolution methods. This paper reviews
the various approaches and gives details of how each one is implemented in
practice, highlighting some of the key features in each case.Comment: Synchronized with final published version. Review to appear in
"Equations of Motion in Relativistic Gravity", published as part of the
Springer "Fundamental Theories of Physics" series. D. Puetzfeld et al.
(eds.), Equations of Motion in Relativistic Gravity, Fundamental Theories of
Physics 179, Springer, 201
Gravitational Lensing in Astronomy
Deflection of light by gravity was predicted by General Relativity and
observationaly confirmed in 1919. In the following decades various aspects of
the gravitational lens effect were explored theoretically, among them the
possibility of multiple or ring-like images of background sources, the use of
lensing as a gravitational telescope on very faint and distant objects, and the
possibility to determine Hubble's constant with lensing. Only relatively
recently gravitational lensing became an observational science after the
discovery of the first doubly imaged quasar in 1979. Today lensing is a booming
part of astrophysics.
In addition to multiply-imaged quasars, a number of other aspects of lensing
have been discovered since, e.g. giant luminous arcs, quasar microlensing,
Einstein rings, galactic microlensing events, arclets, or weak gravitational
lensing. By now literally hundreds of individual gravitational lens phenomena
are known.
Although still in its childhood, lensing has established itself as a very
useful astrophysical tool with some remarkable successes. It has contributed
significant new results in areas as different as the cosmological distance
scale, the large scale matter distribution in the universe, mass and mass
distribution of galaxy clusters, physics of quasars, dark matter in galaxy
halos, or galaxy structure.Comment: Review article for "Living Reviews in Relativity", see
http://www.livingreviews.org . 41 pages, latex, 22 figures (partly in GIF
format due to size constraints). High quality postscript files can be
obtained electronically at http://www.aip.de:8080/~jkw/review_figures.htm
Supernova remnants: the X-ray perspective
Supernova remnants are beautiful astronomical objects that are also of high
scientific interest, because they provide insights into supernova explosion
mechanisms, and because they are the likely sources of Galactic cosmic rays.
X-ray observations are an important means to study these objects.And in
particular the advances made in X-ray imaging spectroscopy over the last two
decades has greatly increased our knowledge about supernova remnants. It has
made it possible to map the products of fresh nucleosynthesis, and resulted in
the identification of regions near shock fronts that emit X-ray synchrotron
radiation.
In this text all the relevant aspects of X-ray emission from supernova
remnants are reviewed and put into the context of supernova explosion
properties and the physics and evolution of supernova remnants. The first half
of this review has a more tutorial style and discusses the basics of supernova
remnant physics and thermal and non-thermal X-ray emission. The second half
offers a review of the recent advances.The topics addressed there are core
collapse and thermonuclear supernova remnants, SN 1987A, mature supernova
remnants, mixed-morphology remnants, including a discussion of the recent
finding of overionization in some of them, and finally X-ray synchrotron
radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2
column-layout. 78 pages, 42 figures. This replaced version has some minor
language edits and several references have been correcte
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …