718 research outputs found

    Looking For Disoriented Chiral Condensates From Pion Distributions

    Get PDF
    We suggest two methods for the detection of the formation of disoriented chiral condensates in heavy ion collisions. We show that the variance in the number of charged pions (in a suitable range of momentum space) provides a signature for the observation of a disoriented chiral condensate. The signal should be observable even if multiple domains of Dχ\chiC form provided the average number of pions per domain is significantly larger than unity. The variance of the number charged pions alone provides a signal which can be used even if the number of neutral pions cannot be measured in a given detector. On the other hand, the probability distribution in RR, the proportion of neutral pions to all pions emitted in heavy ion collisions in certain kinematic regions, has been suggested as a signal of a disoriented chiral condensate. Here we note that the signature can be greatly enhanced by making suitable cuts in the data. In particular, we consider reducing the data set such that the kk pions with lowest pTp_T are all neutral. We find that, given such cuts, can be substantially different from 1/3. For example, for a single D$\chi$C domain without contamination due to incoherently emitted pions, is 3/5 given the pion with lowest pTp_T is neutral, and 5/7 given the two pions with lowest pTp_T are both neutral, {\it etc.}. The effects of multi-domain Dχ\chiC formation and noise due to incoherent pion emission can be systematically incorporated. Potential applications to experiments and their limitations are briefly discussed.Comment: 16 pages in REVTeX, 7 figures. Combined and updated version of nucl-th/9903029 and nucl-th/9904074. Accepted by Phys. Rev.

    Kerr/CFT, dipole theories and nonrelativistic CFTs

    Get PDF
    We study solutions of type IIB supergravity which are SL(2,R) x SU(2) x U(1)^2 invariant deformations of AdS_3 x S^3 x K3 and take the form of products of self-dual spacelike warped AdS_3 and a deformed three-sphere. One of these backgrounds has been recently argued to be relevant for a derivation of Kerr/CFT from string theory, whereas the remaining ones are holographic duals of two-dimensional dipole theories and their S-duals. We show that each of these backgrounds is holographically dual to a deformation of the DLCQ of the D1-D5 CFT by a specific supersymmetric (1,2) operator, which we write down explicitly in terms of twist operators at the free orbifold point. The deforming operator is argued to be exactly marginal with respect to the zero-dimensional nonrelativistic conformal (or Schroedinger) group - which is simply SL(2,R)_L x U(1)_R. Moreover, in the supergravity limit of large N and strong coupling, no other single-trace operators are turned on. We thus propose that the field theory duals to the backgrounds of interest are nonrelativistic CFTs defined by adding the single Schroedinger-invariant (1,2) operator mentioned above to the original CFT action. Our analysis indicates that the rotating extremal black holes we study are best thought of as finite right-moving temperature (non-supersymmetric) states in the above-defined supersymmetric nonrelativistic CFT and hints towards a more general connection between Kerr/CFT and two-dimensional non-relativistic CFTs.Comment: 48+8 pages, 4 figures; minor corrections and references adde

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Holographic Vitrification

    Get PDF
    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.Comment: 100 pages, 25 figure

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for supersymmetry at √s = 13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

    Get PDF
    A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons (e or μμ ) with the same electric charge or at least three isolated leptons. The search also utilises b-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton–proton collisions at s√=13s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb −1−1. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95%95% confidence level up to 1.1–1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550–850 GeV for gluino masses around 1 TeV

    Measurement of the inelastic proton-proton cross section at √s=13 TeV with the ATLAS detector at the LHC

    Get PDF
    This Letter presents a measurement of the inelastic proton-proton cross section using 60  μb −1 of pp collisions at a center-of-mass energy √s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.0710 −6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X >13  GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data

    Searches for Higgs boson pair production in the hh→bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector

    Get PDF
    Searches for both resonant and nonresonant Higgs boson pair production are performed in the hh→bbττ, γγWW∗ final states using 20.3  fb−1 of pp collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is observed and 95% confidence-level upper limits on the production cross sections are set. These results are then combined with the published results of the hh→γγbb, bbbb analyses. An upper limit of 0.69 (0.47) pb on the nonresonant hh production is observed (expected), corresponding to 70 (48) times the SM gg→hh cross section. For production via narrow resonances, cross-section limits of hh production from a heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) limits range from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV. These results are interpreted in the context of two simplified scenarios of the Minimal Supersymmetric Standard Model
    corecore