20 research outputs found

    The CUSSH programme: learning how to support cities' transformational change towards health and sustainability.

    Get PDF
    The Complex Urban Systems for Sustainability and Health (CUSSH) project is a global research programme on the complex systemic connections between urban development and health. Through transdisciplinary methods it will develop critical evidence on how to achieve the far-reaching transformation of cities needed to address vital environmental imperatives for planetary health in the 21st century. CUSSH's core components include: (i) a review of evidence on the effects of climate actions (both mitigation and adaptation) and factors influencing their implementation in urban settings; (ii) the development and application of methods for tracking the progress of cities towards sustainability and health goals; (iii) the development and application of models to assess the impact on population health, health inequalities, socio-economic development and environmental parameters of urban development strategies, in order to support policy decisions; (iv) iterative in-depth engagements with stakeholders in partner cities in low-, middle- and high-income settings, using systems-based participatory methods, to test and support the implementation of the transformative changes needed to meet local and global health and sustainability objectives; (v) a programme of public engagement and capacity building. Through these steps, the programme will provide transferable evidence on how to accelerate actions essential to achieving population-level health and global climate goals through, amongst others, changing cities' energy provision, transport infrastructure, green infrastructure, air quality, waste management and housing

    Developing a programme theory for a transdisciplinary research collaboration: Complex Urban Systems for Sustainability and Health

    Get PDF
    Background: Environmental improvement is a priority for urban sustainability and health and achieving it requires transformative change in cities. An approach to achieving such change is to bring together researchers, decision-makers, and public groups in the creation of research and use of scientific evidence. Methods: This article describes the development of a programme theory for Complex Urban Systems for Sustainability and Health (CUSSH), a four-year Wellcome-funded research collaboration which aims to improve capacity to guide transformational health and environmental changes in cities. Results: Drawing on ideas about complex systems, programme evaluation, and transdisciplinary learning, we describe how the programme is understood to “work” in terms of its anticipated processes and resulting changes. The programme theory describes a chain of outputs that ultimately leads to improvement in city sustainability and health (described in an ‘action model’), and the kinds of changes that we expect CUSSH should lead to in people, processes, policies, practices, and research (described in a ‘change model’). Conclusions: Our paper adds to a growing body of research on the process of developing a comprehensive understanding of a transdisciplinary, multiagency, multi-context programme. The programme theory was developed collaboratively over two years. It involved a participatory process to ensure that a broad range of perspectives were included, to contribute to shared understanding across a multidisciplinary team. Examining our approach allowed an appreciation of the benefits and challenges of developing a programme theory for a complex, transdisciplinary research collaboration. Benefits included the development of teamworking and shared understanding and the use of programme theory in guiding evaluation. Challenges included changing membership within a large group, reaching agreement on what the theory would be ‘about’, and the inherent unpredictability of complex initiatives

    Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56‐98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached organic matter. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Adaptive monitoring using causative conceptual models: assessment of ecological integrity of aquatic ecosystems

    No full text
    Ecosystem monitoring often fails to provide the right information to evaluate and guide environmental stewardship due to a lack of diagnostic capacity, long-term operational resources, explicit monitoring objectives and rigorous sampling designs. Our objective is to describe a monitoring framework that addresses these failures by including causative conceptual models and the concepts of adaptive monitoring and management. Resources are rarely available to monitor all ecosystem components, so identifying priorities is vital for the success of a monitoring program. An ecological risk assessment combining available information and expert opinion on threats and their consequences to the ecosystem can be used to prioritise monitoring and identify explicit objectives. A Pressure-Stressor-Response conceptual model forms the causative understanding of the ecosystem and the model components underpin the factors in the risk assessment. In this way, field sampling can validate the priority of ecosystem threats; provide information for refinement of conceptual understandings and guide efficient management activity. Repeated risk assessments using updated data and information can identify successful management and the increase and establishment of threats. Updated risk assessments can change threat priorities and therefore monitoring and assessment hypotheses and objectives can change. This ability to change underlies the concepts of adaptive monitoring and management

    Heterogeneity in signaled active avoidance learning: substantive and methodological relevance of diversity in instrumental defensive responses to threat cues

    No full text
    Individuals exposed to traumatic stressors follow divergent patterns including resilience and chronic stress. However, researchers utilizing animal models that examine threat responses typically use central tendency statistics that assume population homogeneity, potentially overlooking fundamental differences that can explain human diversity in response to traumatic stressors. The current study tests this assumption by identifying and replicating common heterogeneous patterns of response to signaled active avoidance (AA) training where rats are trained to prevent an aversive outcome (shock) by performing a instrumental behavior (shuttling between chambers) during the presentation of a conditioned threat cue (tone). Study 1 conducted three days of signaled AA training (n = 81 animals) and study 2 conducted five days of training (n = 186 animals). Four trajectories were identified in both samples including animals that acquired and retained avoidance behavior on the first day (Rapid Avoiders: 22% & 25%); those who never successfully acquired avoidance (Non-Avoiders; 20% &16%); a modal class who acquired avoidance over three days (Modal Avoiders; 37% & 50%); and a population who demonstrated a slow pattern of avoidance, failed to fully acquire avoidance in study 1 and did acquire avoidance on days 4 and 5 in study 2 (Slow Avoiders; 22.0% & 9%). With the exception of the Slow Avoiders in Study 1, populations that acquired demonstrated rapid step-like increases leading to asymptotic levels of avoidance. These findings indicate that avoidance responses are heterogeneous in a way that may be informative for understanding resilience and chronic stress responses such as PTSD as well as the nature of instrumental behavior acquisition. Characterizing heterogeneous populations based on their response to threat cues would increase the accuracy and translatability of such models and potentially lead to new discoveries that explain diversity in instrumental defensive responses

    Optimising the sampling effort in riparian surveys

    No full text
    Riparian condition is commonly measured as part of stream health monitoring programs as riparian vegetation provides an intricate linkage between the terrestrial and aquatic ecosystems. Field surveys of a riparian zone provide comprehensive riparian attribute data but can be considerably intensive and onerous on resources and workers. Our objective was to assess the impact of reducing the sampling effort on the variation in key riparian health indicators. Subsequently, we developed a non-parametric approach to calculate an information retained (IR) statistic for comparing several constrained systematic sampling schemes to the original survey. The IR statistic is used to select a scheme that reduces the time taken to undertake riparian surveys (and thus potentially the costs) whilst maximising the IR from the original survey. Approximate bootstrap confidence intervals were calculated to improve the inferential capability of the IR statistic. The approach is demonstrated using riparian vegetation indicators collected as part of an aquatic ecosystem health monitoring program in Queensland, Australia. Of the nine alternative sampling designs considered, the sampling design that reduced the sampling intensity per site by sixfold without significantly comprising the quality of the IR, results in halving the time taken to complete a riparian survey at a site. This approach could also be applied to reducing sampling effort involved in monitoring other ecosystem health indicators, where an intensive systematic sampling scheme was initially employed

    Comparing Smoking Cessation Interventions among Underserved Patients Referred for Lung Cancer Screening: A Pragmatic Trial Protocol

    No full text
    Smoking burdens are greatest among underserved patients. Lung cancer screening (LCS) reduces mortality among individuals at risk for smoking-associated lung cancer. Although LCS programs must offer smoking cessation support, the interventions that best promote cessation among underserved patients in this setting are unknown. This stakeholder-engaged, pragmatic randomized clinical trial (RCT) will compare the effectiveness of four interventions promoting smoking cessation among underserved patients referred for LCS. Using an additive study design, all four arms provide standard Ask-Advise-Refer care. Arm 2 adds free or subsidized pharmacologic cessation aids; Arm 3 adds financial incentives up to $600 for cessation; and Arm 4 adds a mobile device-delivered episodic future thinking tool to promote attention to long-term health goals. We hypothesize that smoking abstinence rates will be higher with the addition of each intervention when compared to Arm 1. We will enroll 3,200 adults with LCS orders at four United States health systems. Eligible patients include those who smoke at least one cigarette daily and self-identify as a member of an underserved group (i.e., Black or Latinx, a rural resident, completed a high school education or less, and/or with a household income \u3c200% of the federal poverty line). The primary outcome is biochemically confirmed smoking abstinence sustained through 6 months. Secondary outcomes include abstinence sustained through 12 months, other smoking-related clinical outcomes, and patient-reported outcomes. This pragmatic RCT will identify the most effective smoking cessation strategies that LCS programs can implement to reduce smoking burdens affecting underserved populations
    corecore