2,401 research outputs found

    dReDBox: Materializing a full-stack rack-scale system prototype of a next-generation disaggregated datacenter

    Get PDF
    Current datacenters are based on server machines, whose mainboard and hardware components form the baseline, monolithic building block that the rest of the system software, middleware and application stack are built upon. This leads to the following limitations: (a) resource proportionality of a multi-tray system is bounded by the basic building block (mainboard), (b) resource allocation to processes or virtual machines (VMs) is bounded by the available resources within the boundary of the mainboard, leading to spare resource fragmentation and inefficiencies, and (c) upgrades must be applied to each and every server even when only a specific component needs to be upgraded. The dRedBox project (Disaggregated Recursive Datacentre-in-a-Box) addresses the above limitations, and proposes the next generation, low-power, across form-factor datacenters, departing from the paradigm of the mainboard-as-a-unit and enabling the creation of function-block-as-a-unit. Hardware-level disaggregation and software-defined wiring of resources is supported by a full-fledged Type-1 hypervisor that can execute commodity virtual machines, which communicate over a low-latency and high-throughput software-defined optical network. To evaluate its novel approach, dRedBox will demonstrate application execution in the domains of network functions virtualization, infrastructure analytics, and real-time video surveillance.This work has been supported in part by EU H2020 ICTproject dRedBox, contract #687632.Peer ReviewedPostprint (author's final draft

    The effect of chest compression frequency on the quality of resuscitation by lifeguards. A prospective randomized crossover multicenter simulation trial

    Get PDF
    BACKGROUND: The ability to perform high-quality cardiopulmonary resuscitation is one of the basic skills for lifeguards. The aim of the study was to assess the influence of chest compression frequency on the quality of the parameters of chest compressions performed by lifeguards. METHODS: This prospective observational, randomized, crossover simulation study was performed with 40 lifeguards working in Warsaw, Wroclaw, and Poznan, Poland. The subjects then participated in a target study, in which they were asked to perform 2-min cycles of metronome-guided chest compressions at different rates: 80, 90, 100, 110, 120, 130, 140, and 150 compressions per minute (CPM). RESULTS: The study involved 40 lifeguards. Optimal chest compression score calculated by manikin software was achieved for 110-120 CPM. Chest compression depth achieved 53 (interquartile range [IQR] 52-54) mm, 56 (IQR 54-57) mm, 52.5 (IQR 50-54) mm, 53 (IQR 52-53) mm, 50 (IQR 49-51) mm, 47 (IQR 44-51) mm, 41 (IQR 40-42) mm, 38 (IQR 38-43) mm for 80, 90, 100, 110, 120, 130, 140 and 150 CPM, respectively. The percentage of chest compressions with the correct depth was lower for rates exceeding 120 CPM. CONCLUSIONS: The rate of 100-120 CPM, as recommended by international guidelines, is the optimal chest compression rate for cardiopulmonary resuscitation performed by lifeguards. A rate above 120 CPM was associated with a dramatic decrease in chest compression depth and overall chest compression quality. The role of full chest recoil should be emphasized in basic life support training

    A software-defined architecture and prototype for disaggregated memory rack scale systems

    Get PDF
    Disaggregation and rack-scale systems have the potential of drastically increasing TCO and utilization of cloud datacenters, while maintaining performance. In this paper, we present a novel rack-scale system architecture featuring software-defined remote memory disaggregation. Our hardware design and operating system extensions enable unmodified applications to dynamically attach to memory segments residing on physically remote memory pools and use such remote segments in a byte-addressable manner, as if they were local to the application. Our system features also a control plane that automates software-defined dynamic matching of compute to memory resources, as driven by datacenter workload needs. We prototyped our system on the commercially available Zynq Ultrascale+ MPSoC platform. To our knowledge, this is the first time a software-defined disaggregated system has been prototyped on commercial hardware and evaluated through industry standard software benchmarks. Our initial results - using benchmarks that are artificially highly adversarial in terms of memory bandwidth - show that disaggregated memory access exhibits a round-trip latency of only 134 clock cycles; and a throughput penalty of as low as 55%, relative to locally-attached memory. We also discuss estimations as to how our findings may translate to applications with pragmatically milder memory aggressiveness levels, as well as innovation avenues across the stack opened up by our work

    Tracing the evolution of NGC6397 through the chemical composition of its stellar populations

    Full text link
    With the aim to constrain multiple populations in the metal-poor globular cluster NGC6397, we analyse and discuss the chemical compositions of a large number of elements in 21 red giant branch stars. High-resolution spectra were obtained with the FLAMES/UVES spectrograph on VLT. We have determined non-LTE abundances of Na and LTE abundances for the remaining 21 elements, including O, Mg, Al, alpha, iron-peak, and neutron-capture elements, many of which have not previously been analysed for this cluster. We have also considered the influence of possible He enrichment in the analysis of stellar spectra. We find that the Na abundances of evolved, as well as unevolved, stars show a distinct bimodality, which suggests the presence of two stellar populations; one primordial stellar generation with composition similar to field stars, and a second generation that is enriched in material processed through hydrogen-burning (enriched in Na and Al and depleted in O and Mg). The cluster is dominated (75%) by the second generation. The red giant branch show a similar bimodal distribution in the Stroemgren colour index c_y=c_1-(b-y), implying a large difference also in N abundance. The two populations have the same composition of all analysed elements heavier than Al, within the measurement uncertainty of the analysis, with the possible exception of [Y/Fe]. Using two stars with close to identical stellar parameters, one from each generation, we estimate the difference in He content, Delta Y=0.01+-0.06, given the assumption that the mass fraction of iron is the same for the stars. Finally, we show that winds from fast rotating massive stars of the first generation can be held responsible for the abundance patterns observed in NGC6397 second generation long-lived stars and estimate that the initial mass of the cluster were at least ten times higher than its present-day value.Comment: 13 pages + appendix with two tables. Accepted for publication in A&A. v2: minor language corrections and Table A.2. correcte

    Coupling early warning services, crowdsourcing, and modelling for improved decision support and wildfire emergency management

    Full text link
    The threat of a forest fire disaster increases around the globe as the human footprint continues to encroach on natural areas and climate change effects increase the potential of extreme weather. It is essential that the tools to educate, prepare, monitor, react, and fight natural fire disasters are available to emergency managers and responders and reduce the overall disaster effects. In the context of the I-REACT project, such a big crisis data system is being developed and is based on the integration of information from different sources, automated data processing chains and decision support systems. This paper presents the wildfire monitoring for emergency management system for those involved and affected by wildfire disasters developed for European forest fire disasters

    EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer

    Get PDF
    Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin β family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.This research was supported by the National Brain Tumor Society (I.K.M.), the National Institutes of Health grants 1R01NS080944-01 (I.K.M.), 1 R35 NS105109 01 (I.K.M.), and P30CA008748 (MSKCC Core Grant), the Geoffrey Beene Cancer Research Foundation (I.K.M.), the Cycle of Survival (I.K.M.), and the Seve Ballesteros Foundation (M.S.). B.O. was supported by an American–Italian Cancer Foundation fellowship and a MSKCC Brain Tumor Center grant. W.-Y.H. is the recipient of a FY15 Horizon Award from the U.S. Department of Defense (W81XWH-15-PRCRP-HA). A.C.-G. is the recipient of the Severo-Ochoa PhD fellowship. Further support was provided by the Sontag Foundation (B.S.T.). We thank all members of the Mellinghoff laboratory for helpful suggestions. We thank Dr. Fiona Ginty (Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA) for assistance with multiplexed immunofluorescence. We thank A.J. Schuhmacher and C.S. Clemente-Troncone for assistance with the in vivo experiments, M. Kaufmann for assistance in the luciferase assays and N. Yannuzzi for assistance in cloning.S

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
    corecore