A Software-defined Architecture and Prototype for
Disaggregated Memory Rack Scale Systems

(Preprint)

Dimitris Syrivelis*, Andrea Reale*, Kostas Katrinis*, Ilias SyrigosT, Maciej Bielski*, Dimitris Theodoropoulos§,
Dionisios N. Pnevmatikatos$ and Georgios Zervas'
*IBM Research, Ireland
TUniversity of Thessaly, Greece
Virtual Open Systems, France
§Foundation of Research and Technology Hellas, Greece
1IUniversity College London, United Kingdom

Abstract—Disaggregation and rack-scale systems have the
potential of drastically increasing TCO and utilization of cloud
datacenters, while maintaining performance. In this paper, we
present a novel rack-scale system architecture featuring software-
defined remote memory disaggregation. Our hardware design
and operating system extensions enable unmodified applications
to dynamically attach to memory segments residing on physically
remote memory pools and use such remote segments in a byte-
addressable manner, as if they were local to the application. Qur
system features also a control plane that automates software-
defined dynamic matching of compute to memory resources, as
driven by datacenter workload needs.

We prototyped our system on the commercially available
Zynq Ultrascale+ MPSoC platform. To our knowledge, this
is the first time a software-defined disaggregated system has
been prototyped on commercial hardware and evaluated through
industry standard software benchmarks. Our initial results -
using benchmarks that are artificially highly adversarial in terms
of memory bandwidth - show that disaggregated memory access
exhibits a round-trip latency of only 134 clock cycles; and a
throughput penalty of as low as 55%, relative to locally-attached
memory. We also discuss estimations as to how our findings
may translate to applications with pragmatically milder memory
aggressiveness levels, as well as innovation avenues across the
stack opened up by our work.

Index Terms—disaggregation, extended memory, serverless
computing, pooled computing, rack scale systems, rack scale dat-
acenters, software-defined systems, cloud datacenters, internet-
scale computers.

I. INTRODUCTION

Resource utilization is one of the key performance indicators
for internet-scale datacenter and cloud providers to optimize
cost of ownership. Guaranteeing consistent high utilization
of resources in large datacenters is a daunting task: typical
Cloud application mixes show high diversity in terms of their
computing resource requirements (i.e., CPUs, memory, storage
and accelerators); for example, as studies in [1] and [2] show,
the distribution of per-application Memory/CPU usage ratio
can be spread over three orders of magnitude. Modern Cloud
implementations largely rely on virtualization and related
migration techniques to improve overall datacenter utilization
by partitioning and isolating resources of bare metal servers
into finer-grained units. However, as virtual machines (VMs)
or containers cannot span across the boundaries of a standalone

server machine, the overall resource ratio remains constrained
to the proportionality imposed by the server mainboard, fixed
at datacenter design time. This results in a waste of CPU
cores, memory and accelerators when they are asymmetrically
depleted.

Fine-grained disaggregation of datacenter resources and
their organization into flexible pools has the potential to
radically change this landscape. And while storage is already
organised in independent resource pools in datacenters today,
main memory and accelerators are still statically attached to
server trays. In this paper, we present a software-defined,
disaggregated memory system architecture for rack scale data-
centers that, in the spirit of Software-defined Networks (SDN5s)
[3] configurability, allows to dynamically allocate and route
disaggregated memory to compute nodes from an expandable
resource pool via a logically centralized software control
plane. Besides describing the design of the overall system, this
paper proposes a hierarchical memory controller architecture
and a disaggregated memory data path that can be used to
attach main memory segments directly on the memory address
bus of a multiprocessor system.

The remainder of this work is organized as follows. Sec-
tion II gives an overview of our disaggragated rack-scale
architecture and Section III discusses the requirements for
our architecture; in Section IV, we focus on the main topic
of the paper, and describe the disaggregated controller that
implements the memory access data path. The control plane
enabling software-defined memory allocation is introduced in
Section V. In Section VI, we present the prototype implemen-
tation of our architecture on Xilinx Ultrascale+ MPSoC [4]
development boards; our experimental evaluation on this pro-
totype demonstrates that, even with the hardware prototyping
constraints imposed by the chosen development platform, our
design can achieve largely acceptable disaggregated memory
access performance as measured with the industry-standard
STREAM memory benchmark [5]. We conclude our paper
by reflecting our work to state-of-the art in Section VII and
summarize our findings and plans for future work in Section
VIIL

Compute Brick Memory Brick

D Flash M M M

c LB N - - -
f\— soc B ¢ ¢
M L omc. DMe

Compute Brick

D To rack
R s | . .
A — SoC . interconnect
m L pmc

- To rack

L] interconnect

Compute Brick
D Flash
DMC

A — SoC —

| M M M =
M DMC (o) M\ (c5 (o}

Memory Brick

Fig. 1. Disaggregated Memory Tray Architecture.

II. SYSTEM OVERVIEW

The major challenge in disaggregating memory is to phys-
ically decouple it from processing elements and host them
on physically and electrically autonomous components. Our
disaggregated architecture proposes the physical organisation
of processing and memory resources shown in Figure 1.

We refer to the physical component that hosts a multiproces-
sor chip as the compute brick. Depending on the integration
approach, this component could be, for example, a System-
on-Module or a pluggable card hosting a multi-processor
system on-chip (MPSoC). At minimum, each compute brick
also features: (a) a limited amount of local non-volatile and
main memory for operating system (OS) bootstrapping and
low-latency access to critical OS/user code, (b) a number
of high-speed serial transceivers used to access remote and
disaggregated memory, and (c) a network interface card (NIC)
used to connect the brick to the control plane management
network. In a production datacenter we expect a compute
brick to also feature additional hardware like, for example,
additional NICs for application data communication, storage
interfaces, or accelerators. The compute brick runs the host
OS and user applications, including VMs or containers.

Symmetrically, we refer to a memory brick as the phys-
ical component that hosts a number of memory controllers
attaching to local memory cells (MC - e.g DDR4) as well as
high-speed serial transceivers. Each memory brick controller
exposes a local address space of byte-addressable memory
that starts at 0x0 and grows up to the total size of memory
available on the brick.

The memory brick is responsible of exposing its memory to
the system’s disaggregated memory pool; as we explain later,
the memory brick is a passive component, meaning it has no
general purpose processing capability nor configuration.

A components tray hosts a fixed number of standardized
slots that may host any combination of compute and memory
bricks. We expect trays to be packaged in datacenter rack
mainboards and chassis. Serial transceivers on the bricks can
be flexibly bridged with an appropriate number of on and off
-tray switching layers. Trays are grouped in racks, and a full
system can be made of several interconnected racks. Overall,
the entire packaging and tray- and rack-level interconnection is
beyond the scope of this paper; still, the work presented herein
assumes that all component transceivers are interconnected
via software-controlled circuit switches, per the high-level
architecture outlined in [6]. Optical circuit switches are a
more attractive solution for memory disaggregation because
of their ps-level switching delay. Good candidate approaches
are discussed in [7] and [8].

Finally, a management network connects compute bricks
to the control plane of the system. As resource allocations
change, the control plane — implemented, for example, as
a set of traditional "out-of-band" server nodes arranged in
hot replicas — has the role of dynamically configuring (a)
circuits between compute and memory bricks and (b) compute
bricks’ hardware and software to establish memory access
data paths. At steady state, and depending on the workloads
hosted on the datacenter, the control plane allocates portions of
memory residing on memory bricks (called memory segments)
to compute bricks.

Transparency to workloads is the main driving and differ-
entiating requirement of our design. Of great significance to
the value of the present work is that, from the point of
view of any application running on a compute brick,
allocated segments of disaggregated memory are usable
as if they were local to the brick. More precisely, once
allocated, disaggregated memory segments are presented to
the brick as byte addressable pieces of main memory, directly
mapped into its physical address space and transparently
accessible via standard memory bus transactions. The OS
exposes remote memory segments grouped in distinct NUMA
domains, reflecting the actual distance of the compute brick
from the memory segments; this allows applications to make
transparent yet qualified use of disaggregated memory.

The Disaggregated Memory Controller (DMC), the core of
our contribution, is a hardware component instantiated on both
compute and memory bricks in slightly different variants. It
is responsible for realising the disaggregation abstraction and
to make remote memory segments appear as local to compute
brick CPUs. We call the DMC instantiated on compute bricks
and memory bricks Compute DMC (CDMC) and Memory
DMC (MDMC), respectively.

III. REQUIREMENTS

A CDMC sits on the compute brick memory bus, intercepts
disaggregated memory requests and routes them towards the
appropriate destination. Without any loss of generality, we
assume that a CDMC listens to one ore more bus master ports,
i.e., entry points which can concurrently initiate memory bus
transactions. Symmetrically, a MDMC sits on the memory

brick’s memory bus, receives incoming remote memory re-
quests from the memory brick transceivers and routes them to
the local bus slave ports, i.e., entry points able to concurrently
respond to bus transactions.

In order to achieve the overall transparency goal outlined in
the previous section, the CDMC needs to provide following
high-level functionalities:

1) intercept disaggregated memory access requests origi-
nated by any of the master ports;

2) translate disaggregated memory transactions so that they
can be understood by receiving memory bricks;

3) steer memory requests towards the appropriate serializa-
tion and de-serialization (serDES) pipelines, which will
transport them toward the destination memory bricks;

4) accept incoming remote memory responses and deliver
them to the master port which issued the request.

Conversely, a MDMC is a relatively simpler component that
needs to:

1) accept memory requests that arrive on the memory brick
transceivers and directly deliver them to a local memory
controller slave port;

2) accept memory responses from the slaves and route them
via the originating transceiver line.

Our design assumes a software controlled circuit-switched
network forming point-to-point links between connected com-
pute and memory brick transceivers. This guarantees that, once
a circuit connecting a compute brick transceiver and a memory
brick transceiver has been established, it is sufficient for the
CDMC to chose the appropriate Tx transceiver link to ensure
memory transaction delivery at the correct destination; in other
words, we do not need to add any explicit addressing infor-
mation to memory requests (responses) in order to identify the
destination brick.

Given that performance is the main barrier to memory
disaggregation, our DMC design needs to be latency and
bandwidth sensitive. Spatial and temporal parallelism is care-
fully exploited throughout all aspects of its architecture. Our
assumption of lossless point-to-point channels lifts the re-
quirement for network-level acknowledgement schemes and
back pressure support. Still, edge buffering techniques need
to be employed to deal with possible performance asymmetry
between communicating entities.

In order to not impede the deployment scalability potential,
the aggregated bandwidth of the total number of transceivers
on a memory brick may exceed the aggregated performance
of its memory controllers. To avoid the disastrous scenario
where multiple compute bricks generate a workload that the
target memory brick cannot handle, the CDMC should feature
rate limiting logic behind each compute brick’s transceiver,
globally governed by the control plane.

IV. DMC HARDWARE DATA PATH

Figure 2 shows the internal architecture of the CDMC,
featuring in the example 2 master and 2 transceiver ports for
the sake of presentation ease. In the figure, the Tx pipelines
(from the compute brick memory bus to its transceivers) are

Memory Request
Preparation
& Steering

Round Robin Arbiter
serDES Rx

MPSoC
Memory Bus

S
=
-
\—

Master Port

Queues (edge buffers)
N\

— - D\O

O

Jas
—CIZIZIO =&

serDES Tx
Pipeline

MempPort Lookup Structure Rate L|m|ter

Fig. 2. Disaggregated Controller Design on the Compute Brick side

highlighted in black, while the reverse Rx pipelines are drawn
in a lighter gray.

The core of the CDMC task is to intercept disaggre-
gated memory requests and translate them in a form that
is consumable by the destination memory brick’s memory
controllers. At remote memory segment allocation time, each
remote memory segment is linearly mapped to a portion
of the receiving compute brick physical address space. This
mapping is arbitrary and determined by the control plane. This
creates two alternative "physical" mappings for each allocated
memory segment: the first (static) from the point of view of
the memory brick hosting the segment, the second from the
point of view of the compute brick to which it is allocated. For
example, a 512 MiB memory segment that is mapped in the
space [0x20000000-0x3FFFFFFF] from the perspective
of its host memory brick might be assigned to the physical map
[0x800000000-0x81FFFFFFF] from the perspective of
the compute brick to which it is allocated.

Given this mapping scheme, it is easy to see that the CDMC
translation process consists of offsetting of a physical memory
address produced by the compute brick CPUs. This task is
performed by the MemPort Lookup Structure and Memory
Request Preparation and Steering components, instantiated
once per master port (thereby shown twice in the example
in Figure 2).

As depicted in Figure 3, the MemPort Lookup Structure
stores information about currently allocated remote memory
segments; it is indexed by segment address boundaries (as
seen by the compute brick), and it contains all the information
needed to translate and steer a request to its destination
memory brick, i.e., offsetting information and identifier of the
point-to-point link to the memory brick.

When a memory transaction request is received, the Memory
Request Preparation and Steering component modifies the
request using information from its associated MemPort Lookup
Structure; before forwarding it to the proper output transceiver,
it tags requests with an identifier of the master port that

originated them. This identifier is eventually used on the Rx
path to deliver correctly incoming responses.

The Memory Request Preparation and Steering component
features a 1z N crossbar, where N is the number of available
transceivers, that steers each request flit towards a destination
transceiver’s transmission queue. Each transceiver is driven
by a Mzl switch, where M is the number of master ports.
The transceiver switches are input queued and just feature a
Round-Robin (RR) arbiter without any crossbar because the
output is single. The arbiter is designed to pull all the flits that
belong to a memory transaction request before it switches to
the next queue.

A similar but reversed architecture is used to steer remote
memory responses back to their originating master ports.
Using the tag identifying the originating master, copied from
the request at the memory brick side, the crossbars behind
the receiving transceivers redirect the arriving flits to the
appropriate master port input queues where the same type of
RR arbiter is used to complete delivery.

The described memory data path architecture features back
pressure support both on the compute brick and memory brick
pipelines, so, if a local queue buffer is full, the whole pipeline
that pushes data to this buffer will stall. Nevertheless, back
pressure support is not available between transceivers so a
possible congestion at the memory brick side can result in
data overflow. However, this can occur only if the aggre-
gated bandwidth of all transceivers on the memory brick is
higher than the capacity of local memory controllers. While
an obvious solution is for the memory bricks to feature
an appropriate transceiver aggregated bandwidth so that the
memory controllers will be never overwhelmed, confining
the number of brick transceivers can impede the scalability
potential. Instead, the CDMC features a rate limiter component
before each transceiver Tx pipeline. The limiter is configured
by the control plane which, having a global view of memory
allocations, can make sure that no memory brick gets a higher
request volume than its controllers can handle.

The presented overall DMC design can be easily scaled to
support an increasing number of on-brick CPUs and mem-
ory bricks by increasing the number of master ports and
transceivers per brick. In terms of performance, the proposed
architecture backplane throughput scales linearly with the
number of masters within a single clock domain. All the RR
arbiters in the design have a single output to feed so they do
not need to run at a faster clock rate to keep the transceiver
serDES pipelines fully occupied. Since it is safe to assume that
the memory bus in any design will be capable of operating at
significantly faster clock rates than any transceiver, the CDMC
can be also partitioned in two different clock domains, one
operating at the memory bus clock and one at the transceiver
clock, with the edge buffering queues acting as clock domain
barriers, so the backplane performance can be further im-
proved. Our DMC design needs Mz N queues on the Tx path
and the same number of queues on the Rx path — M being
the number of bus masters, N the number of transceivers.
Evidently, this demand on hardware FIFO queues has the

(Serve asIndex Request Preparation Request Steering\

A 1 1
[) [\
| [

Low Addr | [High Addr | :|Rmem Offset OutPort |

.

MemPort Lookup Structury

=L T = =
Config

Memory Request Preparation and Steering

Fig. 3. Memport Lookup Structure and Memory Preparation and Steering
components.

potential to limit scalability as the numbers of transceivers
and masters grow. Nevertheless, hundreds of transceivers can
be facilitated before this becomes a real problem. Note that
the scalability analysis above shares challenges with Virtual
Output Queing (VOQ) switching architectures [9], [10], [11].

V. CONTROL PLANE

The control plane is responsible of maintaining an up-
to-date view of the global system resource allocation state,
handle incoming resource allocation requests, and configure
the system hardware to accommodate these allocations.

The control plane is implemented in software and it is
realized as two hierarchical components: a logically central-
ized platform synthesizer and distributed compute brick agents.
Compute brick agents run on compute bricks as kernel- and
user- space components. In kernel-space, a compute brick
agent consists of a device driver able to push new con-
figurations to MemPort Lookup Structures and transceivers
rate limiters, and of a memory driver, built on top of Linux
memory hotplug [12], which exposes newly allocated memory
segments to the rest of the OS. Full description of OS-level
support for our system is beyond the scope of this paper.
In user-space, a networked daemon will listen to memory
allocation/deallocation requests from the platform synthesizer
and interact with the kernel-space components to satisfy them.

The platform synthesizer holds an up-to-date view of the
system resources state and allocation. It provides high level
interfaces to create, remove or change memory allocations,
exposed as REST APIs; it acts on these requests by con-
figuring compute bricks and by setting up the point-to-point
circuits between brick transceivers via the configuration of the
appropriate network switches.

System resources are modelled as a distributed directed
graph, which is traversed at allocation requests to check
on resource availability and to generate system interconnect
configurations. Figure 4 shows an example of such a resource

Switch

Compute
Brick

Memory
Brick

Fig. 4. An example graph-based data model for the representation of resources
and reservations in the platform synthesizer

graph. Compute and memory bricks act as root and sink ver-
tices, respectively; edges depicted as solid arrows represent the
physical interconnect among system components; these edges
are built to reflect all the possible configurations supported
by the system hardware configuration. Evidently, a complete
traversal from source to sink of this type of edges represents a
point-to-point circuit connecting a compute brick to a memory
brick.

The example in Figure 4 features one compute and one
memory brick; each of them has 2 transceivers, all connected
with a 222 optical circuit switch. During the allocation stage,
a path has to be selected. This path is subsequently traversed
and all the visited transceiver and port vertices are marked as
reserved so that all the paths that include them will not appear
as options in future allocation requests. Moreover, the required
resource configuration is determined during the path traversal
and thus, Software-Defined memory rules are generated.

In addition to reflecting resource availability, graph vertices
can be annotated with additional information describing the
resource they represent including, for example, current load or
power requirements. All these fields can be taken into account
by graph traversing resource allocation algorithms to optimize
system usage. Investigating specific resource allocation algo-
rithms is beyond the scope of this paper.

VI. IMPLEMENTATION AND EVALUATION

We have designed and implemented a fully functional proto-
type of the proposed software-defined disaggregated memory
architecture on the Xilinx Ultrascale+ MPSoC platform [4].
The unique feature of this platform is the integration, in a
single SoC, of a so-called Processing System (PS) consisting
of four ARMv8 A53 cores, and a Programmable Logic (PL)
featuring a programmable FPGA. Each PS core features sep-
arate instruction and data caches of 32 KiB, and they share
1 MiB of last level cache. The cache line size is 64 bytes.
Moreover, the PL is interfaced to high speed GTH serial
transceivers. The memory bus interconnect is based on the
AXI4 memory mapped bus architecture [13] and features two
master ports towards the PL, each one of them serving a
224G B memory address space.

The experimental prototype is comprised of two Trenz
UltraSOM+ development boards [4] featuring the XCZU9EG
Ultrascale+ MPSoC. Each board has 2 GiB of DDR4, driven
by two hardware DDR controllers, and 16 GTH transceivers.

Linux Kernel
(2G Memory)

llfit{-" GTH}CoupImgﬁ(lO:G SFP+ CQE)perEble)

= ¢ _‘,‘/_}* - 4 o =il -~
| Compute Brick ’U’j{ @ @‘ ‘\ emory Brick Fﬁﬁ ® (T

Fig. 5. Experimental prototype setup

Two of the latter are interfaced to SFP+ slots. We implemented
the proposed DMC on this development platform using the
protocol design approach on the Vivado High Level Synthesis
[14] toolchain.

In our experiments, one of the two boards acts as compute
brick, the other as memory brick, as shown in Figure 5. The
PL on the compute brick receives AXI4 memory bus requests
from the brick’s CPUs and DMAs. A streamer component
multiplexes the AXI4 bus channels in time. The width of the
datapath is 152 bits, corresponding to the width of the widest
AXI4 channel, i.e., the Read Data channel (128 bits data +
control signals).

The CDMC receives AXI4 channel data beats, performs the
translation and steering operations described in Section IV, and
downsizes the data path width to 64 bits to deliver requests to
the serDES pipelines. The latter are implemented using Xilinx
Aurora IP cores in streaming mode with 64/66B encoder.

The memory brick receives the requests via the correspond-
ing Aurora cores. The MDMC implements edge buffering and
upsizes requests back to 152 bits before feeding them to the
streamer. Finally, requests are delivered to the hardware DDRs
on the memory brick via AXI4 slaves. Responses are delivered
back to the compute brick via a similar but reversed pipeline.

The transceivers are clocked at 156.25 Mhz which, for a 64
bits data path width, provides a rate of 10.3125 Gbit/s per lane.
The rest of the PL design runs in the same clock domain. The
critical path of our design is 134 clock cycles long, applying
to an entire flit round-trip. The largest contributors to this
value are the Aurora pipelines, with a total of 57 cycles per
direction. Note that our critical path calculations do not include
signal propagation delays on cables and DDR response time,
the latter being exactly the same as for local memory access.
According to our measurements, our experimental prototype
achieves a flit round trip delay below 1us.

On the software side, the compute brick runs arm64 Linux
kernel version 4.6.0 and Ubuntu arm64 distribution. At startup,
the kernel will only see the local 2 GiB memory. We configure
the CDMC via the control plane to map 4 additional 512 MiB

STREAM Benchmark Copy

5000 T T
LocalMem C——

RemoteMem =22
o 10G transceiver theoretical bw limit - - - -
& aooo0 | -
wn
a
5
o
= S
s 3000 - B
]
=
©
[=
@ 2000 -
1]
)
2
T e B I &) G | 7|0.33X " | 7|025X
w 1000 B
=
w

0
3 Cores 4 Cores

STREAM Benchmark Add

5000 T T
LocalMem
RemoteMem EXEX
o 10G transceiver theoretical bw limit - - - -
& 4000 | -
wi
@ J—
5
[aa]
z
p= 3000 + - B
z
=
°
=
@ 2000 + -
[}
]
o
e R I, I P R
5
g 1000 |- 0.27X 021X
v 0.47X
. &
1 Core 2 Cores 3 Cores 4 Cores

STREAM Benchmark Scale

5000 T T
LocalMem C——
RemoteMem ==X
o 10G transceiver theoretical bw limit - - - -
& aooo | -
wn
a
5
o
Z
s 3000 - o B
]
=
©
[=
@ 2000 -
1]
)
2
© T |o386X
w 1000 B
=
w
0
3 Cores 4 Cores

STREAM Benchmark Triad

5000 T T
LocalMem
RemoteMem EXXX
o 10G transceiver theoretical bw limit - - - -
& 4000 | -
wi
@
5
[aa]
z
P 3000 - B
k]
=
°
=
@ 2000 + -
[}
3
o
e e [N I I
£ 1000 B
E 0.54X 0.36X 0.27X
. i
1 Core 2 Cores 3 Cores 4 Cores

Fig. 6. STREAM benchmark performance comparison: local Vs software-defined remote memory

segments, all served by the same master port and connected to
the memory brick by one of the transceivers. Leveraging our
custom hotplug-based memory driver, we map this additional
2 GiB of disaggregated memory to a second NUMA domain.

Using this setup, we evaluate disaggregated remote memory
performance using the STREAM benchmark [5], the de facto
industry standard to measure sustainable memory bandwidth
and overall processing balance as perceived by user space
applications. We configured STREAM to use 10 million array
elements, requiring a total memory of 228.9 MiB, which
is well beyond the system cache size. Each benchmark run
executes four kernels, i.e., “copy”, “scale”, “sum” and “triad”
[5]. Specifically, “copy” reads/writes 16 bytes (1 read, 1 write
ops) of memory per iteration, performing no floating point
operations (FLOPs); “scale” reads/writes the same amount of
memory with the same number of operations but it performs
1 FLOP per iteration; “sum” accesses 24 bytes of memory
(2 read and 1 write ops) and executes 1 FLOP per iteration;
finally, “triad” accesses 24 bytes of memory (2 read and 1
write ops) executing 2 FLOPs per iteration. Using the OpenMP
support built-in on STREAM, we confine the benchmarks to

run on 1 up to all 4 compute brick cores'. Leveraging the local
and remote NUMA domains, we repeat the same executions
using only local or disaggregated memory.

Figure 6 shows the results of our evaluation, comparing
local and remote memory performance through clustered bars.
The dotted line designates the maximum theoretical bandwidth
that can be achieved by a 10G transceiver, i.e., 1280 MiB/s
and the bars the sustainable memory bandwidth as measured
by STREAM benchmark for a different number of cores.

Focusing on the “copy” kernel, the results show that one
CPU core can achieve 582 MiB/s bandwidth towards remote
memory, with a penalty of 45% compared to local access. As
more CPUs are used concurrently, the transceiver bandwidth
is quickly saturated and, beyond 2 CPUs, it becomes the
performance bottleneck. In terms of absolute bandwidth, the
“scale” benchmark has worst results because of the presence
of the additional FLOP. However, when comparing local
vs. disaggregated memory, the application-perceived penalty
of using remote rather than local memory is reduced to 25%,
due to the more balanced mix of memory access / processing

'In multicore configurations, cores operate independently on separate data.

operations. The same trend can be observed in the “add” (24
bytes memory accesses per iteration, with 1 FLOP) and “triad”
(24 bytes memory accesses per iteration, with 2 FLOPs).
Overall, these results validate the balanced and pipelined
DMC design and implementation, showing it is capable of
exploiting the full potential of the AXI4 interconnect parallel
and asynchronous operation.

The experimental data collected so far show that remote
memory performance can cause up to 5x deterioration of
application-perceived memory bandwidth in the worst case
scenario where: i) application memory access patterns can-
not take advantage of processor caches, ii) 4 CPU cores
run memory-heavy workloads concurrently and iii) only one
master port and one transceiver are used to serve all memory
access requests.

At the same time, the benchmarks also show that the
introduction of just one single FLOP interleaved with mem-
ory accesses can have surprisingly positive effects on the
application-perceived penalties of using remote memory. In
production scenarios, we expect that delays introduced by
memory disaggregation would have a much smaller impact
on real world applications: unlike a memory benchmark like
STREAM, these workloads would feature a much more bal-
anced mix of memory access, floating point and I/O opera-
tions, and present a much cache-friendlier behaviour. Finally,
we expect that remote memory access delay can be further
and significantly brought down in a production implementation
of our prototype: in fact, it needs to be remarked that our
prototype DMC works at the frequency of 156.25 Mhz due to
requirements imposed by the 10 Gb/s transceivers.

VII. RELATED ART

Making native rack scale resource pooling a reality in the
datacenter through disaggregation has been a year-long quest.
Results [15] obtained lately through evaluation of an analytics
workload on SparkSQL have shown that — throughput-wise —
memory disaggregation can be feasible even with conventional
40Gbps interconnects. Breaking the monolithic design of dat-
acenters (including memory) to decouple arbitrary workload
sizes from static server configuration and enabling component-
independent technology refreshes has been one of the missions
of the Open Compute Project [16] since its early days. Notable
demonstrators and prototype concepts include Intel Rack Scale
Design [17], Facebook "Group Hug" and "Yosemite" server
designs, as well as production-grade specialized kernels and
platform orchestration software for virtual machines operating
on pooled servers, such as Liqid [18]. Similarly, the HPE
Machine [19] prototype showcases SoCs accessing remote
memory via specialized bridging controllers and fabric. Our
work shares common objectives with and can act comple-
mentary to such and related designs; our unique ambition
and the main differentiation point of our proposal stands in
its ability to offer disaggregated memory access dynamically
and transparently to unmodified application binaries and at
memory-scale performance levels.

Previous work on enabling dynamic scale-up to remote
memory resources has shown the potential and challenges of

the approach, either transparently to consuming applications
(via OS/microarchitecture cooperative disaggregation [20]), or
exposing remote memory via explicit programming models
[21]. These previous efforts have evaluated the potential of
memory disaggregation using simulation. Our work evaluates
a similar approach on real hardware showcasing a proto-
type based on a commercial SoC, aiming at appreciating
the production potential of the approach to benchmarks and
representative applications. To that end, we aim to extend
our approach to incorporate targeted OS-level innovation to
further improve application-perceived memory performance
and expand to further applications to directly compare our
findings to [22].

Shared memory clusters define a machine organization
taxonomy that shares technical challenges and some of the
technical and business objectives of disaggregated datacenters.
Distributed shared-memory machines representative of this
taxonomy, like NumaScale [23] or SGI UV [24], have emerged
with the goal of satisfying parallel and distributed applications
(e.g., large-scale computational science, mainframe computa-
tions) that require deployment on a large number of tightly
cooperating cores, whereby also in-memory computing can
bring substantial benefit. Therefore, and to cater for efficient
cooperation between arbitrary sizings of cores, these machines
employ cache coherency between underlying coherency do-
mains, i.e., a distributed cache coherency protocol is typically
employed to turn underlying island domains into a single cache
coherent shared memory machine. At the cost of this flexibility
comes scalability: distributed cache coherence protocols are
not trivial to scale [25] and often impose architectural de-
cisions to control complexity and cache coherency overhead
(e.g., static organization of cooperating multi-processor in tori
topologies). In contrast, our work targets typical Cloud data-
center workloads where applications are typically developed
to leverage socket-level parallelism and to make heavy use
of in-memory computing, but without tangible benefits from
a distributed shared memory scheme. For instance, this is
the case with in-memory data grids like Redis [26] that are
widely used today to hide access latencies to slower stores.
While arbitrary extensions of memory through disaggregation
brings obvious benefits to this class of workloads in terms of
utilization and performance, distributed cache coherence can
be hardly of any value.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a software-defined architec-
ture for memory disaggregation in warehouse-scale computer
and cloud datacenters. It features a logically centralized control
plane, dynamically governing a set of disaggregated com-
pute and memory resource pools materialized as standardized
bricks plugged into rack trays. Our main contribution with
this work is the proposal of a novel disaggregated memory
controller (DMC) hardware architecture, which allows to ar-
bitrarily allocate and access memory segments to compute
nodes according to workload-driven requirements. Uniquely to
our solution, access to disaggregated memory is completely

transparent from the perspective of CPUs — meaning that
our system is able to run unmodified application binaries over
disaggregated memory.

We have presented a prototype implementation of our de-
sign based on the commercially available Xilinx UltraScale+
MPSoC. Our initial experimental evaluation on this prototype
shows that our cut-through design introduces an overhead as
little as a 134 clock cycles compared to local memory access.
Using the standard STREAM memory benchmark over the
disaggregated infrastructure, we show that, in our prototype,
remote memory exhibits a throughput penalty ranging from
1.8x to 5x compared to local memory access, when stressed
against extremely memory-heavy workloads. On the far end
of this range and even if real workloads are not as memory-
intensive as the STREAM benchmark, we contend that this
finding is an artefact of the hard constraints imposed by the
hardware prototyping platform. Specificaly, we identify the
master port aggregate throughput and of the 10Gb/s transceiver
as the main bottleneck on our testbed; we discussed how our
design can be seamlessly scaled to overcome these limitations
on specialized hardware built for the purpose, by e.g. using
parallel transceivers and memory bus master ports.

Our findings demonstrate that disaggregation is a viable
option for next generation datacenters. In fact, compared to our
development prototype, we expect production and at-scale im-
plementations of our design to drastically bring down remote
memory access overhead, for example, by trivially increasing
the number and capacity of transceiver or by implementing
our DMC design on ASIC, thus increasing its operating clock
frequency.

Our future work includes further evaluation on representa-
tive Cloud workloads: our expectation is that the balanced mix
of memory access, computation, and I/O operations, together
with a more efficient use of processor caches, can significantly
mitigate the penalty of using remote memory. Furthermore, we
will extensively explore OS-level optimization techniques as
a promising strategy to improve application performance.

ACKNOWLEDGEMENTS

This work has been conducted in the scope of the dReDBox
(disaggregated Recursive Datacenter-in-a-Box) project [27].
The dReDBox project is funded by the European Union
Horizon 2020 Research and Innovation programme under
grant agreement No 687632.

REFERENCES

[1] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in ACM Symposium on Cloud Computing (SoCC), San Jose, CA,
USA, Oct. 2012.

[2] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker,
“Network support for resource disaggregation in next-generation dat-
acenters,” in Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks, ser. HotNets-XII. New York, NY, USA: ACM, 2013, pp.
10:1-10:7.

[3] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network
and openflow: From concept to implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 2181-2206, 2014.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

(13]
[14]

[15]

[16]

[17]

(18]
[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

“Trenz ultrasom+ te0808-04,” Trenz Electronic. [Online].
Available: https://shop.trenz-electronic.de/en/TE0808-04-09-S-TE0808-
04-09-S-Starter-Kit?c=329b’

J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” I[EEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19-25, Dec.
1995.

K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodor-
opoulos, I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina,
S. Lopez-Buedo, Q. Chen, M. Nemirovsky, D. Roca, H. Klos, and
T. Berends, “Rack-scale disaggregated cloud data centers: The dredbox
project vision,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2016, pp. 690-695.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis,
F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg,
“A throughput-optimized optical network for data-intensive computing,”
IEEE Micro, vol. 34, no. 5, pp. 52-63, Sept 2014.

G. S. Zervas, F. Jiang, Q. Chen, V. Mishra, H. Yuan, K. Katrinis,
D. Syrivelis, A. Reale, D. Pnevmatikatos, M. Enrico, and N. Parsons,
“Disaggregated compute, memory and network systems: A new era
for optical data centre architectures,” in Optical Fiber Communication
Conference. Optical Society of America, 2017, p. W3D.4.

Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers
for vlsi communications switches,” SIGARCH Comput. Archit. News,
vol. 16, no. 2, pp. 343-354, May 1988.

T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-
speed switch scheduling for local-area networks,” ACM Trans. Comput.
Syst., vol. 11, no. 4, pp. 319-352, Nov. 1993.

S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input/output-queued switch,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 6, pp. 1030—
1039, 1999.

“Linux memory hotplug documentation,” kernel.org. [Online]. Available:
https://www.kernel.org/doc/Documentation/memory-hotplug.txt

AXI Reference Guide vi3.1 UG761, Xilinx, March 2011.

K. Karras and J. Hrica, Designing Protocol Processing Systems with
Vivado High-Level Synthesis v1.0.1 XAPP1209, Xilinx, August 2014.
P. S. Rao and G. Porter, “Is memory disaggregation feasible?: A
case study with spark sql,” in Proceedings of the 2016 Symposium
on Architectures for Networking and Communications Systems, ser.
ANCS 2016. New York, NY, USA: ACM, 2016, pp. 75-80. [Online].
Available: http://doi.acm.org/10.1145/2881025.2881030

“Open compute project, ocp summit iv: Breaking up the monolith.”
[Online]. Available: http://www.opencompute.org/blog/ocp-summit-iv-
breaking-up-the-monolith/

“Intel rack scale design.” [Online].
http://www.intel.com/content/www/us/en/architecture-and-
technology/rack-scale-design/rsd-vision-brochure.html
“Ligid hyperkernel.” [Online]. Available: https://ligid.com

“The next platform, "hpe powers up the machine architecture".”
[Online]. Available: https://www.nextplatform.com/2017/01/09/hpe-
powers-machine-architecture/

K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt,
and T. F. Wenisch, “Disaggregated memory for expansion and
sharing in blade servers,” SIGARCH Comput. Archit. News,
vol. 37, no. 3, pp. 267-278, Jun. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1555815.1555789

S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out
numa,” SIGARCH Comput. Archit. News, vol. 42, no. 1, pp. 3-18, Feb.
2014. [Online]. Available: http://doi.acm.org/10.1145/2654822.2541965
H. Montaner, F. Silla, H. Froning, and J. Duato, “A new
degree of freedom for memory allocation in clusters,” Cluster
Computing, vol. 15, no. 2, pp. 101-123, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10586-010-0150-7

“Numaconnect: A high level technical overview of the numaconnect
technology and products (numascale whitepaper).” [Online].
Available: https://www.numascale.com/numa_pdfs/numaconnect-white-
paper.pdf/’

“Sgi uv - the world most powerful in-memory supercomputers.”
[Online]. Available: http://www.sgi.com/products/servers/uv/index.html
M. A. Heinrich, “The performance and scalability of distributed shared-
memory cache coherence protocols,” Ph.D. dissertation, Stanford, CA,
USA, 1999.

“Redis.” [Online]. Available: https://redis.io

Available:

[27] “dredbox h2020 project website.” [Online]. Available:
https://www.dredbox.eu

