15 research outputs found

    A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction

    Get PDF
    The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Farm to School \u26 Child Nutrition Reauthorization

    No full text

    An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures

    No full text
    Traumatic brain injury (TBI) is caused by rapid deformation of the brain, resulting in a cascade of pathological events and ultimately neurodegeneration. Understanding how the biomechanics of brain deformation leads to tissue damage remains a considerable challenge. We have developed an in vitro model of TBI utilising organotypic hippocampal slice cultures on deformable silicone membranes, and an injury device, which generates tissue deformation through stretching the silicone substrate. Our injury device controls the biomechanical parameters of the stretch via feedback control, resulting in a reproducible and equi-biaxial deformation stimulus. Organotypic cultures remain well adhered to the membrane during deformation, so that tissue strain is 93 and 86% of the membrane strain in the x- and y-axis, respectively. Cell damage following injury is positively correlated with strain. In conclusion, we have developed a unique in vitro model to study the effects of mechanical stimuli within a complex cellular environment that mimics the in vivo environment. We believe this model could be a powerful tool to study the acute phases of TBI and the induced cell degeneration could provide a good platform for the development of potential therapeutic approaches and may be a useful in vitro alternative to animal models of TBI

    Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels

    No full text
    The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models

    Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices

    No full text
    The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone

    The Canadian Women’s Heart Health Alliance ATLAS on the Epidemiology, Diagnosis, and Management of Cardiovascular Disease in Women — Chapter 9: Summary of Current Status, Challenges, Opportunities, and Recommendations

    No full text
    This final chapter of the Canadian Women’s Heart Health Alliance “ATLAS on the Epidemiology, Diagnosis, and Management of Cardiovascular Disease in Women” presents ATLAS highlights from the perspective of current status, challenges, and opportunities in cardiovascular care for women. We conclude with 12 specific recommendations for actionable next steps to further the existing progress that has been made in addressing these knowledge gaps by tackling the remaining outstanding disparities in women’s cardiovascular care, with the goal to improve outcomes for women in Canada. Résumé: Dans ce chapitre final de l’ATLAS sur l’épidémiologie, le diagnostic et la prise en charge de la maladie cardiovasculaire chez les femmes de l’Alliance canadienne de santé cardiaque pour les femmes, nous présentons les points saillants de l’ATLAS au sujet de l’état actuel des soins cardiovasculaires offerts aux femmes, ainsi que des défis et des occasions dans ce domaine. Nous concluons par 12 recommandations concrètes sur les prochaines étapes à entreprendre pour donner suite aux progrès déjà réalisés afin de combler les lacunes dans les connaissances, en s’attaquant aux disparités qui subsistent dans les soins cardiovasculaires prodigués aux femmes, dans le but d’améliorer les résultats de santé des femmes au Canada
    corecore