395 research outputs found

    New Results from the Cryogenic Dark Matter Search Experiment

    Full text link
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are >2X lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8-20 GeV/c^2.Comment: 4 pages, 4 figure

    Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}. These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3-sigma by the annual-modulation measurement of the DAMA collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% CL, and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% CL in the asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D; v.2:clarified conclusions, added content and references based on referee's and readers' comments; v.3: clarified introductory sections, added figure based on referee's comment

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Electroweak symmetry breaking in other terms

    Full text link
    We analyse descriptions of electroweak symmetry breaking in terms of ultralocal antisymmetric tensor fields and gauge-singlet geometric variables, respectively; in particular, the Weinberg--Salam model and, ultimately, dynamical electroweak symmetry breaking by technicolour theories with enhanced symmetry groups. Our motivation is to unveil the manifestly gauge invariant structure of the different realisations. We find, for example, parallels to different types of torsion.Comment: 15p

    First Observation of the Cabibbo-suppressed Decays Xi_c+ -> Sigma+ pi- pi+ and Xi_c+ -> Sigma- pi+ pi+ and Measurement of their Branching Ratios

    Get PDF
    We report the first observation of two Cabibbo-suppressed decay modes, Xi_c+ -> Sigma+ pi- pi+ and Xi_c+ -> Sigma- pi+ pi+. We observe 59+/-14 over a background of 87, and 22+/-8 over a background of 13 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600GeV/c Sigma- beam. The branching ratios of the decays relative to the Cabibbo--favored Xi_c+ -> Xi- pi+ pi+ are measured to be B(Xi_c+ -> Sigma+ pi- pi+)/B(Xi_c+ -> Xi- pi+ pi+) = 0.48+/-0.20, and B(Xi_c+ -> Sigma- pi+ pi+)/B(Xi_c+ -> Xi- pi+ pi+) = 0.18+/-0.09, respectively. We also report branching ratios for the same decay modes of the Lambda_c+ relative to Lambda_c+ -> p K- pi+.Comment: 15 pages, 5 figures, version 2 as accepted in PL

    Central Collisions of Au on Au at 150, 250 and 400 A MeV

    Get PDF
    Collisions of Au on Au at incident energies of 150, 250 and 400 A MeV were studied with the FOPI-facility at GSI Darmstadt. Nuclear charge (Z < 16) and velocity of the products were detected with full azimuthal acceptance at laboratory angles of 1-30 degrees. Isotope separated light charged particles were measured with movable multiple telescopes in an angular range of 6-90 degrees. Central collisions representing about 1 % of the reaction cross section were selected by requiring high total transverse energy, but vanishing sideflow. The velocity space distributions and yields of the emitted fragments are reported. The data are analysed in terms of a thermal model including radial flow. A comparison with predictions of the Quantum Molecular Model is presented.Comment: LateX text 62 pages, plus six Postscript files with a total of 34 figures, accepted by Nucl.Phys.

    Studies of the Cabbibo-Suppressed Decays D+π0+νD^+ \to \pi^0 \ell^+ \nu and D+ηe+νeD^+ \to \eta e^+ \nu_e

    Full text link
    Using 4.8 fb1^{-1} of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay D+π0+νD^+\to\pi^0\ell^+\nu measured relative to the Cabibbo favored decay D+K0ˉ+νD^+\to\bar{K^0}\ell^+\nu is found to be 0.046±0.014±0.0170.046\pm 0.014\pm 0.017. Using VcsV_{cs} and VcdV_{cd} from unitarity constraints, we determine f+π(0)/f+K(0)2=0.9±0.3±0.3| f_+^{\pi}(0)/f_+^K(0)|^2=0.9\pm 0.3\pm 0.3 We also present a 90% confidence level upper limit for the branching ratio of the decay D+ηe+νeD^+ \to \eta e^+\nu_e relative to that for D+π0e+νeD^+ \to \pi^0 e^+\nu_e of 1.5.Comment: 10 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions
    corecore