1,670 research outputs found

    RAD51C – a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC)

    Get PDF
    INTRODUCTION: Head and neck squamous cell carcinomas (HNSSCs) are one of the leading causes of cancer-associated death worldwide. Although certain behavioral risk factors are well recognized as tumor promoting, there is very little known about the presence of predisposing germline mutations in HNSCC patients. METHODS: In this study, we analyzed 121 individuals with HNSCCs collected at our institution for germline alterations in the newly identified cancer susceptibility gene RAD51C. RESULTS: Sequencing of all exons and the adjacent introns revealed five distinct heterozygous sequence deviations in RAD51C in seven patients (5.8%). A female patient without any other risk factors carried a germline mutation that disrupted the canonical splice acceptor site of exon 5 (c.706-2A>G). CONCLUSIONS: As there are only a few publications in the literature identifying germline mutations in head and neck cancer patients, our results provide the first indication that paralogs of RAD51, recently described as mutated in breast and ovarian cancer patients, might also be candidates for genetic risk factors in sporadic squamous cell carcinomas of the head and neck

    An intronic alteration of the fibroblast growth factor 10 gene causing ALSG-(aplasia of lacrimal and salivary glands) syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A combined aplasia, hypoplasia or atresia of lacrimal points and salivary glands is rarely diagnosed. Those patients suffer from epiphora, xerostomia and severe dental caries. This phenotype represents the autosomal-dominant aplasia of lacrimal and salivary glands syndrome (ALSG). Recently, aberrations of the <it>Fibroblast Growth Factor 10 </it>(<it>FGF10</it>) gene have been identified to be causative for this disorder.</p> <p>Methods</p> <p>We performed a sequence analysis of the <it>FGF10 </it>gene of a patient with ALSG-syndrome and his also affected brother as well as 193 controls. The FGF10 transcript was analyzed using RNA extracted from primary fibroblasts of the patient's mucosa.</p> <p>Results</p> <p>We detected a novel heterozygous sequence variation in intron 2 (c.430-1, G > A) causing the ALSG syndrome. The alteration derogates the regular splice acceptor site and leads to the use of a new splice acceptor site 127 bp upstream of exon 3. The aberration was detected in the genomic DNA derived from two affected brothers, but not in 193 control individuals. Furthermore, no diseased member of the family displayed additional abnormalities that are indicative for the clinically overlapping lacrimo-auriculo-dento-digital syndrome (LADD).</p> <p>Conclusion</p> <p>This family-based approach revealed an intronic variation of the <it>FGF10 </it>gene causing ALSG-syndrome. Our results expand the mutational and clinical spectrum of the ALSG syndrome.</p

    Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling

    Get PDF
    Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.</p

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling

    Get PDF
    IntroductionSARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants.MethodsWe combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19.ResultsWe observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions.DiscussionWe propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
    corecore