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Introduction: SARS-CoV-2 infection results in varying disease severity, ranging

from asymptomatic infection to severe illness. A detailed understanding of the

immune response to SARS-CoV-2 is critical to unravel the causative factors

underlying differences in disease severity and to develop optimal vaccines

against new SARS-CoV-2 variants.
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Methods: We combined single-cell RNA and T cell receptor sequencing with

CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2

infection at high resolution and compared responses between mild and severe

COVID-19.

Results:We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2

infection and identified a population of NK-like, terminally differentiated CD8+

effector T cells characterized by expression of FCGR3A (encoding CD16).

Further characterization of NK-like CD8+ T cells revealed heterogeneity

among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity,

exhaustion, and NK-like differentiation between mild and severe disease

conditions.

Discussion: We propose a model in which differences in the surrounding

inflammatory milieu lead to crucial differences in NK-like differentiation of

CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T

cell populations of different functionality and pathogenicity. Our in-depth

characterization of the CD8+ T cell-mediated response to SARS-CoV-2

infection provides a basis for further investigation of the importance of NK-

like CD8+ T cells in COVID-19 severity.
KEYWORDS

SARS-CoV-2, scRNA-seq, scTCR-seq, immunoprofiling, CD8+ T cells, FCGR3A, CD16,
NK-like T cell
Introduction

More than two years into the pandemic, severe acute

respiratory syndrome coronavirus type 2 (SARS-CoV-2) still

poses significant challenges to the healthcare system, the

economy, and the public. According to the WHO Coronavirus

Dashboard there have been more than 590 million confirmed

cases and more than 6.4 million deaths due to COVID-19 so far

(August 2022) (1). Although some pharmacological therapeutic

options are available today (2), the molecular mechanisms that

drive the progression to a severe disease condition remain largely

unknown, making vaccination an important instrument to

prevent the occurrence of a life-threatening scenario. However,

despite vaccine efficacy, particularly in preventing severe

COVID-19 (3, 4), breakthrough infections occur repeatedly (5)

and can result in severe disease (6–8) as well as serious long-term

health consequences (9). Thus, a detailed understanding of the

cellular and molecular mechanisms that determine the severity

of SARS-CoV-2 infection is crucial to help developing targeted

therapies and to improve vaccination strategies.

Much attention has been paid to the SARS-CoV-2-specific

antibody response in the public debate, however, several studies

point to a critical role of T cells (10), particularly CD8+ T cells, in

controlling SARS-CoV-2 infection (11, 12). Impairments of the
02
T cell compartment have been suggested to be involved in the

pathogenesis of severe COVID-19. For instance, CD8+ T cell

counts have been found to be substantially reduced in severe and

fatal COVID-19 compared with mild cases (13). Additionally,

hyperactivated CD8+ T cell states have been associated with

COVID-19 lethality and severity (14–16) and CD8+ T cell

exhaustion has been identified as a characteristic of severe

SARS-CoV-2 infection (16).

Single-cell RNA-sequencing (scRNA-seq) techniques offer

the opportunity to investigate cellular heterogeneity, to uncover

cell type-specific gene expression and to dissect cell type-specific

differences between disease conditions. Various studies have

used scRNA-seq to investigate the innate and adaptive

immune response in COVID-19 (17–24). Additionally, within

recent years, scRNA-seq has led to the discovery of large

phenotypic diversity within the CD8+ T cell compartment

(25, 26).

In this study, we perform scRNA-seq combined with single-

cell T cell receptor sequencing (scTCR-seq) and surface protein

profiling using cellular indexing of transcriptomes and epitopes

by sequencing (CITE-seq) (27) of CD8+ T cells in mild and

severe COVID-19 and healthy controls. We observe large

functional and phenotypic heterogeneity within the CD8+ T

cell compartment and identify increased CD8+ T cell exhaustion
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in individuals with severe SARS-CoV-2 infection. By performing

trajectory inference, we identify a terminally differentiated

CD16+ CD8+ effector cell population with an NK-like

phenotype that might be relevant in viral control. Deeper

profiling of these NK-like T cells reveals heterogeneity within

this population and substantial phenotypic differences between

mild and severe disease. Thus, our study provides insights into a

poorly described CD8+ T cell population that might be

important for the antiviral response against SARS-CoV-2.

Moreover, aberrant differentiation of this subpopulation might

be crucially involved in the pathogenesis of severe SARS-CoV-

2 infections.
Materials and methods

Study design

With this study we wanted to dissect the differences in CD8+

T cell responses between individuals with mild and severe SARS-

CoV-2 infection at a single-cell resolution. We performed

scRNA and TCR-seq to identify differences in gene expression

characteristics and clonal expansion between CD8+ T cells from

the different disease conditions. Additionally, we used CITE-seq

antibodies to identify functional subgroups of CD8+ T cells and

to perform a surface-protein profiling.
Patient recruitment and clinical data

Laboratory-confirmed COVID-19 patients were recruited

from the University Hospital of the RWTH Aachen University

and from the Sankt Antonius Hospital Eschweiler from May to

September 2020. All patients provided informed consent and the

study was performed in accordance with the Declaration of

Helsinki. For patients who were not able to give consent

themselves, their legal representative agreed to their

participation in the study. The study protocol was reviewed

and approved by the Ethical Board of the RWTH Aachen

University Hospital (vote: EK 078/20). Initially, 12 COVID-19

patients (6 with mild COVID-19 and 6 with severe COVID-19)

and 3 healthy volunteers were included in the study. After initial

processing of the single-cell data, we observed an extremely high

proportion of effector cells in one healthy control sample. In

addition, the respective healthy volunteer reported an unclear

infection in early January 2020, approximately four months

before the start of the study. Since we could not rule out that

the patient had been infected with SARS-CoV-2, we excluded

this sample in order to avoid a bias. Thus, the final analyses were

carried out on samples from 6 individuals with mild COVID-19,

6 samples with severe COVID-19 and 2 control samples.

Patients were pseudonymized and clinical as well as

epidemiological data were obtained from the electronic
Frontiers in Immunology 03
hospital information system “CGM Medico”. Clinical data is

provided in Table S2.
Group allocation

Based on the clinical course, patients were divided into two

major groups: severe or mild SARS-CoV-2 infection. Patients

with asymptomatic infection and symptomatic patients who did

not require mechanical ventilation were allocated to the group of

mild infection. Symptomatic patients who required mechanical

ventilation were allocated to the group of severe SARS-CoV-2

infection. Group allocation for each patient is shown in Table S2.
Sample collection and PBMC isolation

10-30 ml of blood per patient were collected in either 9 ml S-

Monovettes, K3 EDTA 92x16 mm, or in 5.5 ml S-Monovettes,

75x15 mm, provided by Sarstedt (Nümbrecht, Germany). The

samples were stored at 4°C for a maximum of 7 hours until

further processing. Peripheral blood mononuclear cells

(PBMCs) were isolated by Ficoll gradient centrifugation. The

isolated PBMCs were resuspended in 10% DMSO in FCS and

immediately frozen gradually. The frozen PBMC samples were

stored at -152°C. In addition, serum samples were frozen for

each patient. After thawing, the PBMCs were immediately

diluted with 10 ml 5% FCS in PBS and centrifuged at 500 rcf

for 5 minutes. The supernatant was removed and the PBMCs

were resuspended in 5 ml 5% FCS in PBS and filtered through a

20 µm pluriStrainer® provided by pluriSelect (Leipzig,

Germany) to obtain a single-cell solution.
SARS-CoV-2 antibody testing

To exclude healthy controls with a previous SARS-CoV-2

infection, we tested the subjects for SARS-CoV-2-specific IgG

antibodies by performing the Euroimmun anti-SARS-CoV-2

ELISA (IgG) (EUROIMMUN, Lübeck, Germany) (Table S2).

An IgG ratio of > 2.5 was considered a positive test, a ratio

between 0.8 and 2.5 was considered an intermediate result and a

ratio < 0.8 was considered a negative test (28).
Single-cell immune profiling of
CD8+ T cells

PBMC samples were thawed as described above. After the

PBMCs were passed through a strainer, a second centrifugation

was performed. The supernatant was removed and cells were

diluted in 100 µl 5% FCS in PBS. 5 µl Human TruStain FcX

(BioLegend) was added and incubated for 10 minutes at 4°C.
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The panel of 15 TotalSeq-C antibodies (BioLegend) was pooled,

using 0.5 µg of each antibody (Table S1). Samples were

incubated with MHC class I Dextramer reagents provided by

Immudex (Copenhagen, Denmark) for 10 minutes at 4°C,

followed by a 30 minute incubation with the TotalSeq-C

antibody pool and 5 µl of a PE/Cyanine7 anti-human CD8

antibody (BioLegend) at 4°C. Cells were washed two times using

3 ml 5% FCS in PBS and rediluted in 2 ml 5% FCS in PBS. For

the detection of dead cells, DAPI was added at a final

concentration of 0.5 µg/ml. Cells were sorted into 1% BSA in

PBS on a Sony Cell Sorter by gating on two populations; a PE+

population (MHC I Dextramer reagent-positive) to enrich for

SARS-CoV-2-specific T cells and a CD8+ PE- fraction (Figure

S1A). If the number of PE+ cells did not exceed 10,000 cells, a

maximum of 3,000 CD8+ PE- cells were added prior to single-cell

partitioning and barcoding via Chromium Controller (10x

Genomics). For each sample, three libraries were prepared; a

5´ gene expression library (GEX), a T cell receptor enriched

library (VDJ), and a surface protein library containing the

TotalSeq-C barcodes (ADT). After fluorometric quantification,

the libraries were pooled in a 5:1:1 ratio for the GEX library, the

VDJ enriched library and the ADT library, respectively. The

pooled libraries were again quantified using a Quantus™

Fluorometer (Promega, Madison, Wisconsin, USA) and

sequenced on a NextSeq 500 platform (Illumina, San Diego,

CA, USA) with 2x 150 cycles.
Single-cell RNA seq data processing

Raw scRNA-seq FASTQ files were aligned to the human

GRCh38 genome with Cell Ranger (4.0.0) with default settings

(10x Genomics). For every patient, the paired GEX and ADT

libraries were processed together with the count function and the

VDJ enriched library was processed separately with the vdj

method. Downstream analysis was conducted with Seurat (4.0)

(29) in R version 4.0.3. Cells with < 200 or > 3,000 detected genes

and more than 10% mitochondrial read content were filtered out

(Figures S1H–J are referred to for scRNA quality control metrics

per sample). The GEX and ADT assays were log and centered log

ratio (CLR) normalized, respectively, and were subsequently

scaled with default settings.
Clustering and cell annotation

In order to cluster and characterize cell subtypes, the

samples were integrated based on the GEX libraries for a first

round of clustering. For each sample, the top 2,000 most variable

genes were obtained using the FindVariableFeatures function in

Seurat version 4.0 and dimensional reduction was performed on

the variable features with a principal component analysis (PCA).

To account for batch-effects, the samples were integrated using
Frontiers in Immunology 04
the harmony algorithm version 0.1.0 (30) with default setting,

‘sample’ as the batch variable, and the data was embedded in a

Uniform Manifold Approximation and Projection (UMAP)

using 30 principal components. A nearest neighbor graph was

built with 30 principal components using FindNeighbors and

unsupervised clustering was performed using a Louvain

algorithm with FindClusters and a resolution of 1. In order to

determine cluster-specific markers, a Wilcoxon rank sum test

was performed with FindMarkers using min.pct = 0.25. Only

genes with a false discovery rate (FDR) < 5% were considered.

High-level cell annotation of the clusters was performed on the

integrated data followed by filtering of non-T cells and clusters

consisting mainly of low-quality cells. A second round of

clustering was performed as described above using a resolution

of 0.5. Low-level annotation of the resulting clusters was based

on a combination of GEX and ADT marker expression. One

healthy sample was removed from the study as the volunteer

informed us of an unknown infection in early January 2020 and

exhibited high levels of differentiated effector T cells. Cell-cycle

analysis was performed on the clusters using CellCycleScoring

(Figure S1G) and mitochondrial gene content was computed per

disease condition (Figure S1J). After the final round of

annotation and after determining the average cell proportions

per condition, we removed all cells that were annotated as MAIT

cells, gd T cells and atypical NKT cells to achieve a dataset of

only CD8+ T cells. Cells that expressed either TRAV1-2, TRAJ33

or both, which are T cell receptor genes characteristic of MAIT

cells, were also excluded from the analysis. Lastly, T cells with

missing TCR-seq information (Figure S1F) were removed,

result ing in a final dataset of 25,506 cel ls for al l

downstream analysis.
Differential gene expression and gene set
enrichment analysis

The final dataset consists of control (n = 2,086 cells), mild

(n = 12,251 cells), and severe disease conditions (n = 11,169

cells). For functional characterization of the differences between

the disease conditions, differential gene expression analysis was

performed with FindMarkers using min.pct = 0.25 and FDR

< 5%. When contrasting conditions, only cell types with counts

> 20 in both groups were considered for the analysis. A pre-

ranked gene set enrichment analysis was performed with the

fgsea package (31). The gene sets C2, C5 (subcategory BP), C7,

C8 and H were used for the analysis and were downloaded with

the msigdbr package. Selected gene sets with an FDR < 5% were

visualized as bar plots. A full list of significantly differentially

expressed genes in each CD8+ T cell population and

corresponding gene sets is provided in Table S4. Differentially

expressed genes between disease conditions in CD16+ CD8+

TEMRA subpopulations and associated gene sets for each test are

listed in Tables S6, S7, respectively.
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Subclustering of CD8+ NK-like
TEMRA cells

For subclustering, CD8+ NK-like TEMRA cells were subsetted

using the subset function in Seurat. The subset was normalized,

variable features were identified and the data was scaled

following the standard Seurat workflow. Dimensional

reduction was performed and the subset was re-integrated

with the harmony algorithm version 0.1.0 using ‘patient’ as the

batch variable. A shared nearest neighbor graph was built with

20 principal components using FindNeighbors and unsupervised

clustering was performed on the re-integrated data using a

Louvain-based algorithm with FindClusters and a resolution of

1. Marker genes were identified with FindMarkers using

min.pct = 0.5 and FDR < 5%.
Calculation of functional scores

Gene sets for the calculation of exhaustion and cytotoxicity

scores were adopted from Baryawno et al. (32). For the

estimation of an NK-like phenotype (NK cell signature score),

we used a gene set derived from the cell type signature gene set

‘HAY_BONE_MARROW_NK_CELLS’ (33). For the calculation

of an apoptosis score we used the ‘REACTOME_APOPTOSIS’

gene set, obtained from MSigDB. A score value for each gene set

was calculated for each cell using the AddModuleScore function

in Seurat and score values were plotted as violin plots using the

VlnPlot function in Seurat. For the comparison of functional

scores within CD16+ CD8+ TEMRA-1 cells between the mild and

the severe disease condition, CD8+ NK-like TEMRA-1 cells were

subsetted using the subset function in Seurat. Violin plots were

created using the geom_violin function combined with the

geom_boxplot function in the ggplot2 package (3.3.6) and

significance tests were performed using Wilcoxon test within

the stat_compare_means function in ggpubr (0.4.0).
Integration with reference CD8+ T cell
dataset and reference mapping of
exhausted and NK-like populations

To computationally validate our findings in a larger dataset,

we subsetted the large reference dataset from Ren et al. (34) for

all CD8+ T cells. We then generated two reference datasets. The

first one was generated by filtering the CD8+ T cells for data that

was generated from frozen PBMCs using 5´-sequencing to

match the conditions of our dataset. This PBMC-derived

reference CD8+ T cell dataset was used for investigation of

exhaustion as well as for the integration with our dataset to

validate the existence of an NK-like CD8+ T cell population. For

integration, the CD8+ reference dataset was re-integrated with

the harmony (0.1.0) algorithm using ‘patient’ as the batch
Frontiers in Immunology 05
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algorithm implemented in Seurat (Figures S3A–C). Next,

anchors were identified and the reference CD8+ T cell dataset

was integrated with our dataset using Seurat (Figures S3D–G).

The proportion of cells from our dataset (query) in the

integrated clusters was calculated by dividing the absolute

number of cells of a certain CD8+ T cell subtype in each

integrated subcluster by the total count of cells of this subtype

in our dataset. Results were visualized as heatmap using

pheatmap package (1.0.12).

To isolate and subcluster NK-like CD8+ T cells in the

reference dataset, cell IDs of all cells that clustered together

with our CD8+ NK-like TEMRA cells in the integrated dataset

were isolated using the WhichCells function in Seurat. These

cells were annotated as ‘NK_like_subset’ in the reference dataset

based on cell ID. Further, all NK-like CD8+ T cells in the

reference dataset were subclustered as described above (Figures

S7D–F). The same cell ID-based approach was used to identify

cells in the reference dataset that mapped to exhausted CD8+ T

cells in our dataset.

Besides the PBMC-derived reference dataset, we also filtered

the large CD8+ T cell dataset for samples derived from

bronchoalveolar lavage fluid (BAL). The BAL-derived CD8+ T

cell reference dataset was re-integrated as described above

(Figures S3H–J) and used to investigate exhaustion in lung-

derived CD8+ T cells.
Mild and severe disease scores

To identify gene sets in NK-like CD8+ T cells that are related

to disease severity, we performed differential gene expression

analysis between all CD8+ NK-like TEMRA cells from the mild

and the severe condition using the FindMarkers function with a

min.pct = 0.5 and FDR < 5%. Next, we identified genes

differentially expressed between the two disease conditions,

which overlapped with highly significant marker genes of our

CD8+ NK-like TEMRA population. To optimize identification of

gene sets, the p-value threshold for the selection of CD8+ NK-

like TEMRA marker genes was adjusted multiple times. Finally,

choosing only the most significant marker genes with a p-value

threshold of 1e-17 yielded best results. Genes with an average

log2-fold change > 0 in differential expression analysis between

mild and severe COVID-19 were combined into the ‘mild

disease score’, while genes with an average log2-fold change <

0 were combined into the ‘severe disease score’.

Mild and severe disease score values were calculated for

every cell in our CD8+ NK-like TEMRA cell subset as well as for

every cell in the reference NK-like CD8+ T cell subset using

AddModuleScore. Results were grouped by condition (query and

reference) and by outcome (reference) and plotted as boxplots

using geom_boxplot in ggplot2 package (3.3.6). Lastly score

values were calculated for every cell in our whole dataset as
frontiersin.org
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well as for every cell in the reference CD8+ T cell dataset and

score values were projected onto the UMAP using the

FeaturePlot function in Seurat. To investigate cell type-specific

score values, score values were plotted per cell type using the

VlnPlot function in Seurat (Figures S7H, I).
Signaling pathway and transcription
factor activity

Signaling pathway activities were estimated with PROGENy

(35, 36) using the top 500 footprint genes per pathway. To test

for significant differences between the conditions, Wilcoxon

rank sum tests were performed on relevant pathways and cell

types with FDR < 5%. Transcription factor activities were

computed with the viper package (1.24.0) (37) using regulons

with confidence levels A, B or C from DoRothEA (38). The

changes in transcription factor activity were estimated per cell

type using the condition contrasts obtained from differential

gene expression analysis with FindMarkers. Transcription factor

activities with FDR < 5% in pairwise comparisons between the

conditions were visualized with geom_tile function in ggplot2.

Figure S6G is referred to for all PROGENy pathway activities

per condition.
Data integration for cell-cell
communication analysis

To estimate cell-cell interactions between our CD8+ T cell

populations and non-T cell populations, our dataset was

integrated with a selected subset of data from Ren et al. (34).

For sample selection from the public dataset, we included 16

disease samples (mild/moderate = 4, severe/critical = 12) where

matched samples from both PMBCs and bronchoalveolar lavage

fluid (BAL) were available. Additionally, we included 6 healthy

controls. In total, the subsetted public dataset consisted of

119,587 disease and 41,919 healthy cells (total n = 161,506)

(Table S10).

Integration of our single-cell dataset with the public dataset

was performed using harmony (0.1.0). Briefly, different samples

were used as the batch variable to account for batch-effects

between the two datasets. Network neighborhood algorithm,

followed by the Louvian clustering approach implemented in

Seurat (4.1.1), was used to identify cell-clusters in the integrated

dataset. The final integrated dataset consisted of a total of

187,012 cells from 36 samples.
Cell-cell communication

To predict cell-cell interactions, LIANA (0.1.6) (39) was used

per disease condition with the statistical_analysis method. Cell
Frontiers in Immunology 06
types with counts > 20 per condition were included in the

analysis and the log-normalized and scaled counts were used

as input. Ligand-receptor interactions with p-value < 0.05 were

considered for the downstream analyses.

CrossTalkeR (40) was used to compute changes in ligand-

receptor interactions between the conditions. Briefly,

CrossTalkeR constructs representations of the ligand-receptor

networks for each condition, where the edges of the network are

weighted by the number of interactions and the sum of weights

of the interaction-pairs obtained by LIANA. Differential cell-cell

interaction networks were constructed by subtracting the

condition state network from the control states.

For the characterization of differences in interactions with

CD8+ NK-like TEMRA cells between the conditions, differential

cell-cell interactions that were predicted by CrossTalkeR were

filtered for CD8+ NK-like TEMRA cells as receptor cluster, while

all non-CD8+ T cells were considered as ligand cluster (except

for megakaryocytes). Differential absolute LR-Scores were

plotted as dot plots for selected interactions that have been

shown to be relevant in NK cell development and function.

To focus on differences in selected interactions between mild

and severe SARS-CoV-2 infection, all CD8+ T cell populations

were regarded as receptor cluster, while the same cell types as

before were regarded as ligand clusters. Boxplots displaying the

LR-Scores for each predicted interaction, grouped by condition,

were plotted using the geom_boxplot function in ggplot2.

Wilcoxon-test was used to compare for statistical differences

between the mild and the severe condition using the

stat_compare_means function in ggpubr.
Trajectory inference and
pseudotemporal differential
gene expression

In order to estimate CD8+ T cell differentiation, trajectory

inference was performed with Slingshot (2.2.1) (41). In addition to

the previously removed MAIT, ɣd, NKT cell populations, CD8+

CD73+ Treg populations were also excluded from the pseudotime

analysis in order to only include T cell subpopulations likely to

originate from the CD8+ naïve T cells. The final dataset for

trajectory analyses consisted of 24,716 cells. Slingshot was run

on the UMAP embedding of the remaining clusters and the CD8+

naïve T cell population was manually designated as the root of all

inferred trajectories. Two trajectories were determined by the

pseudotime analysis; the short-lived effector cell (SLEC) lineage

and exhaustion (EX) lineage. In order to test for significant

differences between the distribution of the mild and the severe

disease conditions across pseudotime, a Kolmogorov-Smirnov test

was performed for each lineage.

For temporal differential gene expression analysis between the

two trajectories, tradeSeq (1.8.0) was used (42). A negative binomial

generalized additive model (NB-GAM) was built on the 10,000
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most variable genes and pseudotimes for the mild and severe

conditions using the fitGAM function. In order to study

differences in temporal gene expression between the conditions, a

condition-specific smoother was computed per lineage. 6 knots

were used for the NB-GAM (Figure S4A is referred to for a

visualization of the knots projected onto the integrated UMAP).

Differential gene expression between the progenitor and

differentiated cell populations was performed with startVsEndTest

using l2fc = log2(2). The significant genes from the test were

modeled with predictSmooth using nPoints = 50 and visualized

with pheatmap. The expression of significant genes across

pseudotime was visualized with plotSmoothers. To characterize

potential early drivers of differentiation towards the two

trajectories, earlyDETest was used at the bifurcation point

(between knots 2 and 3) with l2fc = log2(1.5). Differential gene

expression between the end stages of the lineages was performed

with diffEndTest using l2fc = log2(2). Temporal differential

expression between the mild and severe conditions for each

lineage was computed with conditionTest using l2fc = log2(2),

global = TRUE, and pairwise = TRUE. For all tests performed

with tradeSeq, only genes with FDR < 5%were considered. For each

test performed with tradeSeq, all genes were ranked based on the

estimated Wald statistic and a gene set enrichment analysis was

performed as previously described. Table S5 is referred to for a full

list of significantly differentially expressed genes for each test.
T cell receptor clonality analysis

In order to study T cell receptor (TCR) clonality in the

scRNA data, TCR clonotypes were assigned based on the VDJ

library using the cellranger vdj function. For the analysis, only

MHC class I restricted T cell subtypes were considered. For

clonality analysis in the CD8+ reference dataset, the data frame

containing TCR-seq data was loaded into R. The reference

dataset was filtered for cells for which TCR-seq data were

available in the data frame and vice versa. Finally, TCR-seq

data was added to the dataset using the AddMetaData function

implemented in Seurat. The clonotypes were grouped based on

the level of expansion and designated as; single (n = 1), small (1 <

n ≤ 5), medium (5 < n ≤ 20), large (20 < n ≤ 100), or

hyperexpanded (n > 100). The relative abundance of the

clonotype size groups was computed for the conditions and

cell types and visualized as bar charts. Figures S5A, D, E are

referred to for the TCR clonotype size distribution for each cell

type per condition in our dataset, the PBMC-derived, and the

BAL-derived CD8+ reference datasets, respectively.

In order to estimate changes in TCR diversity between the

disease conditions during CD8+ T cell differentiation, the

Shannon diversity index was calculated over pseudotime for

the SLEC and EX trajectories. Cells in the two trajectories were

grouped into 8 different sets by ascending order of pseudotime.

For each bin, the TCR chains were extracted along with the
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condition (mild or severe) and chain (TRA or TRB) level

information. TCR sequences were rearranged into the

‘TCR_V_CDR3_TCR_J’ format for TRA and TRB chains, and

subsequently these sequences were combined into a format

‘TRA_V_CDR3A_TRA_J_TRB_V_CDR3B_TRB_J’ to calculate

the Shannon index based on the total TCR sequence

information. Shannon entropy was then applied on the

occurrence of several TCR chains by using the vegan package

(2.6.2) (43).

To investigate overlap in TCR repertoires between the three

conditions, TCR sequences were first rearranged into the

‘TCR_V_CDR3_TCR_J’ format. Overlap between the conditions

was calculated and visualized separately for TCR alpha and beta

chain with the ggvenn function in the ggvenn package (0.1.9).

To quantify clonotype similarity between CD16+ CD8+

TEMRA subpopulations (Figure S6C), the Morisita index was

calculated. To this end, TCR sequences were again rearranged

into the ‘TCR_V_CDR3_TCR_J’ format and the absolute count

of each TCR sequence per CD16+ CD8+ TEMRA subtype was

calculated. Morisita index was calculated using the repOverlap

function implemented in immunarch package (0.7.0)

with.method = ‘morisita’ and.col = ‘v+aa+j’. Overlap was

visualized using the vis function implemented in immunarch.
Calculation of CDR3 abundance

To calculate the frequency of TRA and TRB CDR3 usage,

TCR sequences were rearranged into the ‘TCR_V_CDR3_TCR_J’

format. The absolute count of each unique TCR sequence was

calculated for each condition and for T cell receptor alpha and

beta chains separately and divided by the total count of TCR

sequences in the respective condition. The top 15 CDR3 sequences

were visualized as bar charts.
Analysis of flow cytometry data

To investigate the expression of surface protein receptors

associated with CD8+ T cell exhaustion and to confirm the

existence of CD16+ CD8+ TEMRA subsets identified in the

scRNA-seq dataset, we analyzed data from a publicly available

flow cytometry dataset containing the same disease conditions as

our dataset (44).

Flow cytometry data were processed using FlowJo version

10.8.1, and the output was subsequently analyzed and visualized

in R.
Statistical analysis

Statistical analyses were performed using R version 4.0.3 and

GraphPad Prism version 9. Unless stated otherwise, significance
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was estimated with Wilcoxon rank sum tests. p-values were

adjusted for multiple testing with the Benjamini-Hochberg

method with FDR < 5%. Throughout the paper, significance

was depicted as: **** = p-value ≤ 0.0001, *** = p-value ≤ 0.001,

** = p-value ≤ 0.01, * = p-value < 0.05.
Results

A population of exhausted CD8+ T cells
is exclusive for severe COVID-19

To investigate CD8+ T cell heterogeneity in SARS-CoV-2

infection, we first performed single-cell immunoprofiling of

CD8+ T cells (5´ sequencing, 10x Genomics) by combining

scRNA-seq with TCR-seq and single-cell proteomics (CITE-seq

antibodies, Table S1). To this end, CD8+ T cells were isolated

from patients (Table S2) with mild COVID-19 (n = 6), severe

COVID-19 (n = 6), and healthy controls (n = 3) and enriched for

SARS-CoV-2-specific CD8+ T cells by FACS sorting using MHC

I Dextramer reagents (Figures 1A, S1A). Of note, during the

analysis, we detected a high proportion of a specific effector cell

population in a healthy control who informed us of an unclear

infection in early January 2020, approximately four months

before the start of the study, and we therefore excluded this

sample from the study (healthy controls, n = 2).

Unsupervised clustering and subsetting for CD8+ T cells

captured 30,623 cells and 13 distinct clusters (Figures 1B, S1B–J).

Functional annotation of T cell subclusters was based on RNA

and protein expression of CD45RA, CCR7 (45) and specific T

cell effector markers (Figure 1C and Table S3) (46). We

identified 10 functional subpopulations of CD8+ T cells as well

as three small populations that were annotated as atypical NKT

cells (NKT), mucosal-associated invariant T cells (MAIT) and gd
T cells (Figures 1B–D, S1B, C). Since we aimed at investigating

CD8+ ab T cells, these three subpopulations were excluded from

all further analysis. T cells expressing one or both of the T cell

receptor genes characteristic of MAIT cells, TRAV1-2 and

TRAJ33, were also excluded. Additionally, since we aimed to

analyze clonal expansion, T cells with missing TCR-seq

information (Figure S1F) were removed, leaving us with a final

dataset of 25,506 cells for all downstream analyses.

Two clusters strongly expressed natural killer (NK) cell

markers KLRC2 and NCR3, and were therefore annotated as

NK-like CD8+ early effector T cells (NK Teff) and NK-like CD8+

effector memory T cells re-expressing CD45RA (NK TEMRA). To

validate our functional annotation, we investigated the

expression of established markers KLRG1 and IL7R (47, 48) in

each cluster (Figure 1E). In accordance with our annotation,

terminally differentiated effector populations (CD8+ TEMRA and

CD8+ NK TEMRA) displayed high expression of KLRG1 and low

IL7R expression, while naïve (CD8+ TN) and central memory T

cells (CD8+ TCM) expressed high levels of IL7R and low levels of
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KLRG1 (Figure 1E). CD8+ NK Teff cells and CD8+ effector

memory T cells 1 (TEM1) expressed both KLRG1 and high

levels of IL7R and therefore may represent populations of

memory precursor effector cells (MPEC) (47, 48).

To identify differences in CD8+ T cell populations between mild

and severe COVID-19, we performed differential gene expression

analysis between cells from mild and severe SARS-CoV-2 infection,

followed by gene set enrichment analysis (GSEA) (Figure 1F and

Table S4). GSEA revealed the enrichment of gene sets associated with

T cell effector differentiation and T cell activation in severe COVID-

19, whereas genes related to CD8+ T cellmemory differentiation were

enriched in mild COVID-19, indicating that CD8+ T cell fate is

strongly directed toward a highly activated effector phenotype in

severe SARS-CoV-2 infection (Figure 1F and Table S4).

Furthermore, we observed enrichment of genes associated with the

term ‘GSE26495_PD1HIGH_VS_PD1LOW_CD8_TCELL_DN’ in

CD8+ TEMRA cells inmild COVID-19. PD-1 is an inhibitory receptor

that has been associated with T cell exhaustion, suggesting that CD8+

TEMRA cells in mild SARS-CoV-2 infection, compared to severe

infection, resemble cells with low PD-1 expression and thus exhibit a

less exhausted phenotype (Figure 1F). Interestingly, we detected a

small population of exhausted CD8+ T cells (TEX) characterized by

expression of TIGIT, CTLA4, CD279 (PD-1) and HAVCR2 (Tim-3)

that was exclusive to the severe COVID-19 group (Figures 1B, G), a

finding which has been reported by others before (49, 50).
Validation of CD8+ T cell exhaustion
in COVID-19

Exhausted T cells display a strong impairment of effector

functions (51) and are typically seen in chronic infections or

tumors, where chronic antigenic stimulation induces exhaustion

(52). To investigate the functional relevance of exhaustion in our

dataset, we calculated cytotoxicity and exhaustion scores

previously described (32, 53) (Figures 2A, S2A, B). Exhaustion

appeared to increase almost linearly with increasing cytotoxicity,

resulting in high cytotoxicity and exhaustion scores in particular

effector cell populations (Figure S2A). TEX cells exhibited

extremely high exhaustion scores with presumably moderate

cytotoxicity (Figures 2A, S2A), suggesting a disturbed balance

between the expression of inhibitory receptors and the cytotoxic

functions of CD8+ T cells. Comparison of exhaustion scores

between the CD8+ T cell populations revealed highest

exhaustion scores in TEX cells (Figures 2B, S2C). Comparison

of exhaustion scores of all CD8+ T cells between conditions

revealed significantly higher exhaustion scores in severe SARS-

CoV-2 infection compared to mild disease or healthy

controls (Figure 2C).

To further investigate CD8+ T cell exhaustion, we first

analyzed a publicly available flow cytometry dataset

(Figures 2D, S2D) generated by the COMBAT consortium

(44). Analysis of PD-1 and TIM3 expression, two markers of
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T cell exhaustion, revealed significantly higher frequencies of

double-positive cells (PD-1+TIM3+) in COVID-19 compared to

healthy controls, although no significant difference was observed

between mild and severe infection (Figure 2D).

Since the size of our single-cell dataset was limited, we

wanted to investigate exhaustion in a large public dataset by

Ren et al. (34). Therefore, after filtering the reference dataset for

5´-sequencing samples and samples derived from frozen PBMCs

to match our samples, we extracted all CD8+ T cells, resulting in

a reference dataset of 114,209 CD8+ T cells. However, by

investigating exhaustion scores in the reference dataset, we

were unable to clearly identify a CD8+ T cell population
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characterized by extremely high exhaustion scores (Figure

S2E). In addition, comparison of exhaustion scores of all CD8+

T cells between conditions revealed lower exhaustion scores in

severely/critically ill patients compared to mild/moderate illness

or controls (Figure 2E). Interestingly, when comparing

exhaustion scores in all CD8+ T cells between outcome groups,

patients who succumbed to COVID-19 displayed the highest

exhaustion scores (Figure 2F).

To uncover exhausted T cells in the reference dataset, we

integrated the reference dataset with our CD8+ T cell dataset.

Most of our TEX cells mapped onto one distinct subcluster

(cluster CD8+_T_4) in the integrated dataset (Figure 2G).
B C D
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A

FIGURE 1

Study design and identification of functional subsets of CD8+ T cells. (A) Schematic overview of the study design. PBMCs were isolated from
healthy volunteers, patients with mild, and patients with severe COVID-19. PBMCs were gradually frozen and stored at -152°C until further
processing. After thawing, T cells were isolated using magnetic activated cell sorting. CD8+ T cells were obtained by FACS, and CD8+ T cells
were then subjected to the 10x pipeline. (B) Integrated UMAP projection of all 13 CD8+ T cell subpopulations (n = 30,623) (C) Scaled expression
of antibody-derived tag (ADT) markers (CITE-seq) per CD8+ T cell subpopulation. (D) Average proportion of CD8+ T cell subsets for the healthy
(n = 2), mild (n = 6), and severe (n = 6) condition. Cell type proportions per patient are reported in Figure S1C. (E) Expression of KLRG1 and IL7R
per CD8+ T cell population. (F) Selected gene sets enriched in CD8+ TEMRA cells when comparing severe to mild COVID-19 (for a full list of gene
sets see Table S4) (G) Number of exhausted CD8+ T cells per condition and patient. FACS, fluorescence activated cell sorting; TCR, T cell
receptor; GEX, gene expression; ADT, antibody-derived tag; CD8+ TN, CD8

+ naïve T cells; CD8+ TCM, CD8
+ central memory cells; CD8+ CD73+

Treg, CD8+ CD73+ regulatory T cells; CD8+ TEMRA, CD8
+ terminally differentiated effector memory cells re-expressing CD45RA; CD8+ NK TEMRA,

CD8+ NK-like terminally differentiated effector memory cells re-expressing CD45RA; CD8+ TEM1, CD8
+ effector memory cells 1; CD8+ TEM2,

CD8+ effector memory cells 2; CD8+ Tcyc, CD8
+ cycling effector cells; CD8+ NK Teff, CD8

+ NK-like early effector T cells; NKT, atypical NKT
cells; CD8+ TEX, CD8

+ exhausted T cells; MAIT, Mucosal associated invariant T cells; gd, gd T cells; GSEA, gene set enrichment analysis.
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FIGURE 2

CD8+ T cell exhaustion in COVID-19 (A) Relationship between T cell exhaustion and cytotoxicity. Each CD8+ T cell is placed in the coordinate
system according to its individual exhaustion and cytotoxicity score value. To highlight the position of CD8+ exhausted T cells, all other CD8+ T
cell populations are colored in gray. A version of this plot with cell type-specific and condition-specific colors is available in Figure S2A, S2B,
respectively. (B) Violin plot of exhaustion scores per cell type. (C) Exhaustion scores in all CD8+ T cells per condition. (Kruskal-Wallis test: H (2) =
2407, p < 0.0001; healthy vs. mild: p < 0.0001; healthy vs. severe: p < 0.0001, mild vs. severe: p < 0.0001) (D) Frequencies of cells expressing
different combinations of the exhaustion markers PD-1 and TIM3 in all CD8+ T cells as examined by flow cytometry. (TIM3+PD-1+: Kruskal-
Wallis test: H(2) = 21.59, p < 0.0001; control vs. mild: p = 0.0002; control vs. severe/critical: p < 0.0001, mild vs. severe/critical: p = 0.8933;
TIM3-PD-1-: Kruskal-Wallis test: H(2) = 6.314, p = 0.0426; control vs. mild: p = 0.036; control vs. severe/critical: p = 0.1046, mild vs. severe/
critical: p = 0.1689; TIM3-PD-1+: Kruskal-Wallis test: H(2) = 6.07, p = 0.0481; control vs. mild: p = 0.1303; control vs. severe/critical: p = 0.9359,
mild vs. severe/critical: p = 0.0484, TIM3+PD-1-: Kruskal-Wallis test: H(2) = 6.287, p = 0.0431; control vs. mild: p = 0.1369; control vs. severe/
critical: p = 0.0377, mild vs. severe/critical: p = 0.4863) (E) Exhaustion score in all CD8+ T cells in the reference dataset per condition. (Kruskal-
Wallis test: H(2) = 149.7, p < 0.0001; control vs. mild: p < 0.0001; control vs. severe/critical: p < 0.0001, mild vs. severe/critical: p < 0.0001)
(F) Exhaustion score in all CD8+ T cells in the reference dataset per outcome. (Kruskal-Wallis test: H(2) = 1328, p < 0.0001; control vs.
discharged: p < 0.0001; control vs. deceased: p < 0.0001, discharged vs. deceased: p < 0.0001) (G) Heatmap displaying the proportions of
query cell types that mapped to each cluster in the integrated dataset. High values indicate that most cells of a query cluster were assigned to a
distinct cluster in the reference dataset. (H) Projection of cells that mapped to exhausted CD8+ T cells from the query dataset onto the UMAP of
the reference dataset. (I) Exhaustion scores per condition in cells from the reference dataset that mapped to exhausted CD8+ T cells in the
query dataset. (Kruskal-Wallis test: H(2) = 31.24, p < 0.0001; control vs. mild/moderate: p = 0.1054; control vs. severe/critical: p < 0.0001, mild/
moderate vs. severe/critical: p = 0.0011) (J) Exhaustion scores per condition in CD8+ T cells from bronchoalveolar lavage fluid. (Kolmogorov-
Smirnov test: D = 0.2422, p < 0.0001) BAL, bronchoalveolar lavage. **** = p-value ± 0.0001, *** = p-value ± 0.001, ** = p-value ± 0.01, * = p-
value < 0.05, ns = not significant.
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Projecting all cells from this subcluster back to the UMAP of the

CD8+ T cell reference dataset revealed that the exhausted T cells

were distributed across the UMAP space of the reference dataset,

rather than forming a distinct cluster (Figure 2H). This

explained why we were unable to identify a distinct cluster

with a high exhaustion score in the reference dataset. Thus, we

focused on the newly identified subset of exhausted T cells in the

reference dataset and compared exhaustion scores within these

cells between conditions. We observed significantly higher

exhaustion scores in the exhausted subset in severe/critical

COVID-19 as compared to mild/moderate disease and healthy

controls (Figure 2I). Similarly, patients who died due to COVID-

19 revealed highest exhaustion scores in their exhausted subset

(Figure S2F).

Lastly, we asked whether exhaustion is more pronounced in

CD8+ T cells that are close to the site of infection. To this end, we

generated a second CD8+ T cell reference dataset by filtering all

CD8+ T cells from the Ren dataset (34) for cells derived from

bronchoalveolar lavage (BAL) fluid. Also in this dataset we did

not identify a cluster characterized by excessively high

exhaustion scores (Figure S2G). However, when comparing the

exhaustion scores of all BAL-derived CD8+ T cells between the

conditions and the outcomes of SARS-CoV-2 infection, the

group of severely infected individuals and the group that

succumbed to COVID-19 clearly displayed higher exhaustion

scores than the group with mild infection or the group that

recovered from SARS-CoV-2 infection, respectively (Figures 2J

and S2H). Since the differences in exhaustion scores between the

conditions were more pronounced in BAL-derived CD8+ T cells,

it is conceivable that CD8+ T cells that are close to the site of

infection undergo more severe exhaustion, an effect that seems

to be pronounced in severe and critical SARS-CoV-2 infection.

For an overview over the reference and the integrated datasets,

we refer to Figures S3A-J.
SARS-CoV-2 infection drives terminal
effector differentiation towards an
NK-like phenotype

To investigate CD8+ T cell differentiation we predicted

pseudotime trajectories using Slingshot (41). As input for

inference of differentiation trajectories by Slingshot, we

manually defined the cluster of CD8+ naïve T cells as the root

of all differentiation trajectories. Slingshot predicted two

differentiation pathways (Figures 3A, S4A), both originating in

naïve CD8+ T cells and passing through the effector memory

stage. Trajectory 1 continued toward the TEMRA and the NK

TEMRA stages and was termed ‘short lived effector cell lineage’

(SLEC). Trajectory 2 ended in close proximity to the exhausted

CD8+ T cell population; we therefore termed this lineage

‘exhaustion lineage’ (EX) (Figure 3A). Investigation of

pseudotime-dependent cell densities revealed highest cell
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densities in early stages of pseudotime in mild COVID-19 for

both lineages, whereas there appeared to be a significant shift in

cell densities toward the late stages of differentiation in severe

COVID-19 (Figure 3B). Surprisingly, cells from healthy controls

showed a similar distribution of cell densities as cells from

severely infected patients. Because Figure 3B displays only the

number of cells at a given differentiation stage, and bias may

occur in single-cell experiments regarding the ratio of different

cell populations to each other, comparisons of absolute

frequencies in single-cell datasets should be evaluated with

caution. In our case, it is conceivable that the distribution in

healthy controls is partly due to the smaller number of cells in

this group.

To verify our lineage assignments and to compare

trajectories between mild and severe disease conditions, we

performed trajectory-based differential expression analysis for

sequencing data (tradeSeq) (42) (Table S5). tradeSeq revealed a

significant downregulation of IL7R (Figure S4B) and a

significant upregulation of KLRG1 (Figures 3C, D) along the

SLEC lineage, suggestive of effector differentiation, while

significant upregulation of CTLA4 along the EX lineage mainly

in the severe condition (Figure S4B), supported the concept of an

‘exhaustion lineage’. Comparison between the disease conditions

indicated significantly stronger expression of certain NK cell

receptors (CD160, KLRC2, KLRC3, KLRF1, KIR3DL2, NCR1,

NCR3) along the SLEC lineage in mild COVID-19 compared to

severe COVID-19 (Figures 3D, S4C, D). These results suggest

that NK cell receptors are expressed during effector

differentiation in SARS-CoV-2 infections and that in severe

COVID-19 the expression profile of these receptors differs

from the one in mild COVID-19. Since CD8+ NK TEMRA cells

represent a final state of the SLEC lineage (Figure 3A), and this

population is particularly characterized by the expression of NK

cell receptors, we concluded that the observed differences could

be the result of differences in the differentiation of CD8+ NK

TEMRA cells in severe SARS-CoV-2 infection. To deeply

characterize this population, we examined the genes

differentially expressed in CD8+ NK TEMRA cells as compared

to all other CD8+ T cell populations (Figure 3E and Table S3).

Strikingly, CD8+ NK TEMRA cells displayed strong upregulation

of FCGR3A (CD16), KLRF1 and certain kil ler cel l

immunoglobulin-like receptors (KIRs), strong downregulation

of IL7R (Figure 3E), and expression of IKZF2. CD16+ CD8+ T

cell populations have been previously observed in different

chronic viral infections (54, 55). Naluyima et al. have

described a population of terminally differentiated CD16+

CD8+ T cells characterized by the expression of KIRs, KLRF1,

IKZF2 as well as low expression levels of IL7R that were able to

mediate antibody-dependent cellular cytotoxicity (ADCC) (54).

These cells strongly resembled our CD8+ NK TEMRA population

and we verified low IL7R (CD127) expression at a surface

protein level using our CITE-seq data (Figure S4E). In

summary, SARS-CoV-2 infection seems to induce a
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population of terminally differentiated CD16+ CD8+ effector T

cells, which are observed in other chronic viral infections and

appear to differ between the disease conditions.
T cell receptor diversity in mild and
severe COVID-19

Next, we asked whether there are differences in clonal

expansion of CD8+ T cells between the COVID-19 disease
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conditions. Superimposing TCR clonality on our UMAP

indicated an increase in clonal expansion along the

differentiation trajectories (Figure 4A), consistent with clonal

expansion and differentiation after antigen encounter. As

expected, effector cell populations (CD8+ TEM1, CD8
+ TEM2,

CD8+ Tcyc, CD8
+ TEMRA, CD8

+ NK TEMRA) displayed highest

re la t ive abundance of hyperexpanded c lones and

hyperexpansion appeared to be more pronounced in severe

COVID-19 (Figures 4B, S5A). Only CD8+ NK TEMRA cells

appeared to be more expanded in mild than in severe COVID-
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FIGURE 3

CD8+ T cells differentiate towards an NK-like phenotype during SARS-CoV-2 infection. (A) Pseudotimes and estimated trajectories projected
onto the integrated UMAP of cell types likely originating in naïve CD8+ T cells (n = 24,716). For trajectory inference with Slingshot, naïve CD8+ T
cells were manually chosen as the origin of differentiation. (B) Temporal distribution of cell densities for all three conditions across pseudotime.
Shifts in distribution between the mild and the severe condition for the short-lived effector cells (SLEC) and exhaustion (EX) lineage were tested
with the Kolmogorov-Smirnov method (EX: D = 0.40237, p < 2.2e-16, SLEC: D = 0.31004, p < 2.2e-16). (C) Heatmap depicts differentially
expressed genes between the progenitor and differentiated cell populations across pseudotime (start vs. end testing). (D) Smoothed expression
of KLRG1 and KLRC2 across pseudotime with the y-axis on natural logarithmic scale. p-values report the result of differential expression analysis
between progenitor and differentiated cell states across pseudotime (start vs. end testing). An extended panel of genes and their UMAP
projections are reported in Figure S4. (E) Volcano plot of genes differentially expressed in CD8+ NK-like TEMRA cells.
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19 (Figure S5A). Because strong expansion of individual clones

can affect TCR diversity, we calculated the Shannon diversity

index as a measure of TCR repertoire diversity over pseudotime

using the whole TCR sequence and observed a decrease in

diversity for all three conditions (Figure 4C). However, at

most time points, the TCR repertoire appeared to be more
Frontiers in Immunology 13
diverse in mild SARS-CoV2 infection than in severe infection

in both lineages (Figure 4C). Analysis of TCR overlap for both

the T cell receptor alpha (TRA) and T cell receptor beta (TRB)

chains revealed no significant differences in overlap between the

two disease states and the diseased and healthy states (Figure

S5B). Next, we calculated the relative contribution of the CDR3
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FIGURE 4

Clonal expansion and TCR diversity in COVID-19. (A) T cell receptor clonal expansion projected onto the integrated UMAP of cell types.
(B) Distribution of clonal expansion within the conditions (left) and within the CD8+ T cell populations (right), displayed as relative abundance of
clonotype expansion groupings (Figure S5A is referred to for abundance per cell type within each condition). (C) Shannon diversity index as a
measure of clonal diversity across pseudotime for the three conditions among SLEC and EX lineages. Shannon index was calculated on the
whole TCR sequences, including TRA and TRB chains. (D) Relative proportion of CDR3 sequences of the 15 most abundant clones to the total
number of CDR3 sequences per condition for the TRA chain (Figure S5C is referred to for the relative proportion of CDR3 sequences for the
TRB chain). (E) TCR clonal expansion projected onto the UMAP of the PBMC-derived CD8+ reference dataset. (F) Distribution of clonal
expansion within the conditions (left) and within the CD8+ T cell populations (right), displayed as relative abundance of clonotype expansion
groupings for the PBMC-derived reference dataset. (Figure S5D is referred to for abundance per cell type within each condition of the reference
dataset). (G) Shannon diversity index per condition for the PBMC-derived reference dataset and (H) for our query dataset. (I) TCR clonal
expansion projected onto the UMAP of the BAL-derived CD8+ reference dataset. (J) Shannon diversity index per condition for the BAL-derived
reference dataset. TCR, T cell receptor; SLEC, short-lived effector cell; EX, exhaustion; TRA, T cell receptor alpha chain; TRB, T cell receptor
beta chain; CDR3, Complementarity determining region 3; BAL, bronchoalveolar lavage.
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sequences of the top 15 clonotypes to the overall CDR3 pool in

the respective conditions for the TRA chain (Figure 4D) and the

TRB chain (Figure S5C). Even though we observed one clone

that was highly hyperexpanded and occupied a larger portion of

the TCR space than all other clones in severe COVID-19, we did

not observe major differences between mild and severe disease

(Figures 5D, S5C). The Shannon diversity index and analysis of

CDR3 abundance both indicated lowest TCR diversity in

healthy controls.

We validated our findings in the large PBMC-derived CD8+ T

cell reference dataset (Figures 4E–H) but observed only minor

differences in the distribution of clonotype sizes between

conditions (Figures 4F, S5D). As in our dataset, control CD8+ T

cells displayed the lowest TCR diversity as measured by Shannon

index in the reference dataset (Figure 4G–H). However, in

contrast to our data (Figures 4C, H), mildly infected individuals

did not show the highest TCR diversity (Figures 4G–H). In

summary, we observe highly expanded CD8+ effector T cell

populations in SARS-CoV-2 infection. However, our results do

not suggest major differences in T cell expansion or T cell receptor

diversity between mild and severe COVID-19. TCR diversity

seems to increase in response to SARS-CoV-2 infection as

indicated by the higher Shannon index in mild and severe

COVID-19 compared to healthy controls. It is conceivable that

more T cells are released into the blood during the course of

infection to diversify the TCR repertoire and to thus induce an

immune response against a maximum number of viral antigens.

This may explain the observed differences in Shannon index

between healthy controls and disease conditions.

Finally, we investigated clonal expansion in the BAL-derived

CD8+ reference dataset (Figures 4I, J, S5E). This analysis

confirmed our previous observation that no major differences in

overall TCR diversity exist between mild and severe SARS-CoV-2

infection (Figure 4J). However, we observed a difference in clonal

expansion between mild and severe infection in a cell type we

termed BAL_CD8+_7. While this cell type exhibited the lowest

expansion in severe COVID-19, it showed strong clonal

expansion in mild COVID-19 (Figure S5E). Interestingly,

BAL_CD8+_7 cells were mainly characterized by the expression

of FCGR3A and KLRF1 (Figure S5F), suggesting that this

population resembles our CD8+ NK-like TEMRA cells. Since we

also observed stronger expansion of this cell type in mild than in

severe SARS-CoV-2 infection in our dataset (Figure S5A), the

findings of the BAL dataset confirmed our previous findings.
Subtypes of NK cell-like CD8+ T cells in
SARS-CoV-2 infection

Trajectory analysis suggested a CD16+ CD8+ T cell population

(previously termed CD8+ NK TEMRA cells) as a final state of CD8+

terminal effector differentiation that seemed to differ in phenotypic

characteristics between mild and severe COVID-19. Recently,
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Georg et al. discovered highly activated and highly cytotoxic

CD16+ T cells among the CD4+ and CD8+ T cell compartments

which were more abundant in severe COVID-19 as compared to

mild disease or healthy controls and had the ability to elicit

antibody-dependent cellular cytotoxicity (ADCC) (56). Because of

the potential relevance of these CD16+ CD8+ T cells for both,

effective antiviral response as well as immunopathology, we focused

our analysis on CD8+ NK TEMRA cells.

To investigate cellular heterogeneity among CD16+ CD8+ T

cells, we subclustered our CD8+ NK TEMRA population, resolving

six subclusters (Figure 5A), which we termed CD16+ CD8+

TEMRA cells-1 to 6. All subpopulations were present in every

condition (Figure 5B) and in most patients (Figure S6A).

However, the CD16+ CD8+ TEMRA-1 cluster accounted for the

largest subpopulation and appeared to be more abundant in

mild disease and healthy controls, whereas the CD16+ CD8+

TEMRA-6 cluster was more abundant in severe disease

(Figure 5B). Analysis of clonal expansion revealed stronger

clonal expansion in CD16+ CD8+ TEMRA cells in mild disease,

while the lowest proportion of hyperexpanded clones was

observed in subcluster 6 cells (Figure S6B). To quantify

overlap in TCR repertoires between the CD16+ CD8+ TEMRA

subsets, we calculated the Morisita index (Figure S6C). While

there appeared to be large overlap in TCR repertoire between

subsets 1-5, CD16+ CD8+ TEMRA-6 cells displayed lowest levels

of overlap with other subclusters (Figure S6C). The strong

similarity in TCR repertoires of subsets 1-5 may indicate that

these subpopulations are derived from each other in a

continuous differentiation process, whereas subset 6 cells may

arise as a result of an alternative differentiation process.

Differential gene expression analysis between the 6 subclusters

(Table S6) revealed high expression of BTG1 in CD16+ CD8+

TEMRA-1 cells (Figure 5C), a gene that has been shown to be

involved in the maintenance of a quiescent state in T cells (57).

In contrast, CD16+ CD8+ TEMRA-6 cells differentially expressed

MHC class II genes HLA-DRA and HLA-DQB1 (Figure 5C),

which are known to be upregulated by activated T cells (58, 59),

indicating a high activation state of subset 6 cells, similar to the

populations described by Georg et al. (56). We further

investigated expression of specific genes related to NK cell

function and observed strong expression of KLRF1 and

FCGR3A in CD16+ CD8+ TEMRA-2 to 5 cells (Figure S6D),

indicating that these cells strongly resembled the population

described by Naluyima et al. in HIV infection (54). Despite their

effector phenotype, CD16+ CD8+ TEMRA-1 cells exhibited

expression of IL7R (Figure S6D), which may indicate a more

naïve phenotype, compared to the other subpopulations, or the

potential to develop into memory T cells (48, 60). Surface

expression of IL7R (CD127) on subcluster 1 cells and surface

expression of HLA-DR on subcluster 6 cells were validated using

our CITE-seq data (Figure 5D). Interestingly, we further

observed expression of CD161, another NK cell receptor on

subcluster 2-5 cells (Figure S6E).
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To quantify and compare functional characteristics of the

different subpopulations, we calculated functional scores for

every cell and compared it between the subsets (Figures 5E,

S6F). Interestingly, CD16+ CD8+ TEMRA-1 and -6 cells displayed
Frontiers in Immunology 15
the lowest NK cell signature score, suggesting differences in NK-

like differentiation between the subpopulations (Figure 5E).

Regarding the expression of genes involved in T cell

quiescence and homeostasis, it is conceivable that subcluster 1
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FIGURE 5

Heterogeneity among CD8+ NK-like terminally differentiated effector memory T cells re-expressing CD45RA. (A) Integrated UMAP projection of
subclustered CD8+ NK-like TEMRA cells (CD16+ CD8+ TEMRA cells) (n = 1,320). (B) Average proportion of CD16+ CD8+ TEMRA subsets for the three
conditions. Cell type proportions per patient are reported in Figure S6A. (C) Average expression of marker genes differentially expressed in the
six CD16+ CD8+ TEMRA subsets. (D) Surface expression (CITE-seq) of IL7R and HLA-DR per CD16+ CD8+ TEMRA subtype. (E) NK cell signature
scores of the six CD16+ CD8+ TEMRA subsets. (F) Differentially expressed genes in CD16+ CD8+ TEMRA-2 cells between the severe and the mild
disease condition. (G) Selected significantly enriched gene sets for genes differentially expressed in the indicated CD16+ CD8+ TEMRA subtypes
between mild and severe disease groups. Positive normalized enrichment scores (NES) indicate enrichment in the severe disease condition.
(H) PI3K pathway activity in CD16+ CD8+ TEMRA-3 cells estimated with PROGENy. Significance was tested using Wilcoxon rank sum test. All
PROGENy pathways are reported in Figure S6G. (I) Differential transcription factor activity (DoRothEA) estimated with msviper in CD16+ CD8+

TEMRA-1 cells between the severe and the mild condition. Positive NES values indicate increased activity in severe SARS-CoV-2 infection.
(J) Different functional scores applied to CD16+ CD8+ TEMRA-1 cells and compared between severe and mild COVID-19 (Wilcoxon rank sum
test). DGE, differential gene expression; log2FC, log2 fold change; GSEA, gene set enrichment analysis; NES, normalized enrichment score; PI3K,
Phosphoinositide 3-kinase; TF, transcription factor.
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cells represent a CD16+ CD8+ progenitor population from

which, controlled by the influences of the prevailing milieu,

the various other subpopulations emerge, acquiring further NK-

like characteristics during differentiation.
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We next performed differential gene expression analysis

between the conditions for every CD16+ CD8+ TEMRA

subcluster (Figure 5F and Table S6). Despite that only a limited

number of differentially expressed genes proved significant due to
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FIGURE 6

Validation of CD16+ CD8+ TEMRA cells and cell-cell interaction analysis. (A) Validation of the existence of CD16+ CD8+ TEMRA subsets, identified
in scRNA-seq data. The expression of HLA-DR (highly expressed in CD16+ CD8+ TEMRA-6 cells) and CD161 (highly expressed by CD16+ CD8+

subsets 2 to 5) was investigated in single, live CD16+ CD8+ T cells in a flow cytometry dataset (left panel). As a comparison, the mean expression
of the corresponding genes (HLA-DRA as an example of an HLA-DR gene, as well as KLRB1 encoding CD161) in the CD16+ CD8+

subpopulations is shown (right panel). (B) UMAP embedding of the CD8+ T cell reference dataset (n = 114,209). Cells that mapped together with
the CD8+ NK-like TEMRA cells from our query dataset after integration are highlighted in green. (C) Schematic illustrating the generation of mild
and severe disease scores. Differential gene expression analysis was performed between mild and severe disease groups for all CD16+ CD8+

TEMRA cells. Differentially expressed genes that overlapped with highly significant marker genes of CD16+ CD8+ TEMRA cells (CD8+ NK-like TEMRA

cells) were identified. Genes that were differentially upregulated in cells from mild disease (average log2-fold change > 0.25) were combined
into the mild disease score, whereas genes that were differentially downregulated in cells from mild disease (average log2-fold change < 0.25)
were combined into the severe disease score. (D) Comparison of mild (top) and severe (bottom) disease scores in NK-like CD8+ T cell subsets
between conditions in our query dataset (left), between conditions in the PBMC-derived reference dataset (middle) and between outcome
groups in the PBMC-derived reference dataset (right). Kruskal-Wallis test was used for significance testing. (query mild disease score: Kruskal-
Wallis test: H(2) = 462.6, p < 0.0001; healthy vs. mild: p < 0.0001; healthy vs. severe: p < 0.0001, mild vs. severe: p < 0.0001; query severe
disease score: Kruskal-Wallis test: H(2) = 330.5, p < 0.0001; healthy vs. mild: p < 0.0001; healthy vs. severe: p < 0.0001, mild vs. severe: p <
0.0001; reference mild disease score condition: Kruskal-Wallis test: H(2) = 778.6, p < 0.0001; control vs. mild/moderate: p = 0.0046; control vs.
severe/critical: p < 0.0001, mild/moderate vs. severe/critical: p < 0.0001; reference severe disease score condition: Kruskal-Wallis test: H(2) =
246.2, p < 0.0001; control vs. mild/moderate: p < 0.0001; control vs. severe/critical: p < 0.0001, mild/moderate vs. severe/critical: p < 0.0001;
reference mild disease score outcome: Kruskal-Wallis test: H(2) = 258.2, p < 0.0001; control vs. deceased: p = < 0.0001; control vs. discharged:
p < 0.0001, deceased vs. discharged: p < 0.0001; reference severe disease score outcome: Kruskal-Wallis test: H(2) = 203.9, p < 0.0001; control
vs. deceased: p = < 0.0001; control vs. discharged: p < 0.0001, deceased vs. discharged: p < 0.0001) (E) Mild disease score values projected
onto the UMAP embeddings of our query CD8+ T cell dataset (left) and the reference CD8+ T cell dataset (right). Projections for severe disease
score values are depicted in Figure S7G. (F) Differential ligand-receptor interactions between severe and mild COVID-19. To assess interactions
between CD8+ T cells and non-T cells our dataset was integrated with the whole reference dataset and interactions were predicted using
LIANA. Differential interactions were then calculated using CrossTalkeR for selected interactions, relevant in NK cell development and function.
A group of ligand clusters was selected and NK-like CD8+ TEMRA cells were regarded as receptor cluster. The size of the dots indicates the
absolute value of the differential LR-Score. The color indicates the direction of the change in ligand-receptor interactions; orange indicates
increased interactions in severe COVID-19, purple indicates decreased interactions in severe COVID-19. (G) Boxplots displaying differences in
LR-Scores for selected interactions between severe and mild COVID-19. All CD8+ T cell populations were regarded as receptor population and
all other populations (except megakaryocytes) were regarded as ligand population for this purpose. DEGs, differentially expressed genes; LR-
Score = ligand-receptor score.
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the small sample size, the differential expression of MHC class II

genes in severe SARS-CoV-2 infection in different subpopulations

(Figure 5F and Table S6) supported the suggestion of a strong

activation state of NK-like CD8+ T cells in severe COVID-19.

Differential expression of NK cell receptor genes, such as KLRC2

and KIR3DL2 in CD16+ CD8+ TEMRA-2 cells in mild COVID-19

compared with severe COVID-19 further strengthened the

hypothesis of profound differences in NK-like differentiation

between disease conditions.

Performing GSEA on the differentially expressed genes

revealed the enrichment of the gene ontology (GO-) term

“GOBP Antigen Processing And Presentation Of Peptide Or

Polysaccharide Antigen Via MHC Class II” in subcluster 1 in

severe disease (Figure 5G and Table S7), which is consistent with

the differential expression of MHC class II genes (Table S6).

Strikingly, while various CD8+ T cell signature genes were

enriched in different CD16+ CD8+ TEMRA subtypes in severe

SARS-CoV-2 infection, cells in subcluster 6 were negatively

enriched in genes associated with “Hay Bone Marrow NK

cells” (Figure 5G and Table S7). Thus, we concluded that

compared to CD16+ CD8+ TEMRA cells from patients with

mild SARS-CoV-2 infection, cells from severely affected

individuals are impaired in their NK-like differentiation and

are rather characterized by CD8+ T cell-like traits, than by NK-

like characteristics (Figure 5G).

We then inferred pathway activity in CD16+ CD8+ TEMRA

cells and observed significantly stronger PI3K signaling in

CD16+ CD8+ TEMRA-3 cells in the diseased conditions when

compared to healthy controls (Figures 5H, S6G). Several NK cell

receptors mediate their signals via the PI3K pathway (61, 62)

and especially ADCC, a key function of NK cells, which is

triggered upon CD16 ligation is mediated via the PI3K pathway

(63). Thus, increased PI3K activity could indicate increased

ligation of Fcg-receptor-IIIa and a relevance for ADCC in the

immune response to COVID-19. Inference of transcription

factor activity predicted significantly stronger activity of the

Regulatory Factor X (RFX) transcription factor family in severe

COVID-19 when compared to mild disease in all 6 NK-like

subtypes (Figures 5I, S6H, I; Table S8). Since these transcription

factors are involved in the regulation of MHC class II genes (64),

higher activity is in accordance with differential expression of

MHC class II genes and the enrichment in GO-terms related to

antigen processing via MHC class II in severe SARS-CoV-

2 infection.

To further dissect functional differences between mild and

severe SARS-CoV-2 infection, we focused on CD16+ CD8+

TEMRA-1 cells, which we suspected to be the earliest of the six

subpopulations in terms of NK-like differentiation. We assigned

different functional scores to all CD16+ CD8+ TEMRA-1 cells and

compared them between mild and severe disease. While there

were no significant differences in apoptosis (apoptosis score),

CD16+ CD8+ TEMRA-1 cells were significantly more exhausted

and cytotoxic in severe COVID-19 (Figure 5J). Furthermore, a
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significantly higher NK cell signature score in mild COVID-19

(Figure 5J) further supported the hypothesis of impaired NK-like

differentiation in severe SARS-CoV-2 infection, which appeared

to be present already at the early stage of CD16+ CD8+ TEMRA-

1 cells.

In summary we observed several subsets of CD16+ CD8+

TEMRA cells in SARS-CoV-2 infection, which rather represent a

continuum in NK-like differentiation than distinct cellular

subpopulations. Four subsets strongly expressed KLRF1 and

FCGR3A, displayed surface expression of CD161 and

resembled a population of CD16+ CD8+ T cells that has

previously been described in other viral infections (54, 55).

Another subset with the lowest amount of hyperexpanded

clones, the lowest overlap in TCR repertoire with other

subsets, and surface expression of HLA-DR, indicating high

activation status, was more abundant in severe COVID-19. A

larger subset of CD16+ CD8+ T cells that displayed surface

expression of IL7R and a lower NK cell signature than the

previously mentioned subsets was present in all three conditions.

However, cells in this subset differed strongly between mild and

severe disease. Investigation of NK cell characteristics revealed

profound differences between mild and severe COVID-19 and

suggested impaired NK-like differentiation in severe COVID-19.

It is conceivable that CD16+ CD8+ TEMRA-1 cells represent the

initial population from which, depending on the cytokine milieu

and the stimulation of specific surface receptors, the different

CD16+ subpopulations develop.
CD16+ CD8+ NK-like derived gene sets
are related to severity and outcome of
SARS-CoV-2 infection

Since our CD16+ CD8+ T cell subset only consisted of 1,320

cells, we aimed at verifying the existence of an NK-like CD8+ T

cell population by flow cytometry as well as in the CD8+

reference dataset (34).

To this end, we again used the public flow cytometry dataset

(44) (Figure S7A). CD16+ CD8+ TEMRA subsets were combined

into three groups, based on the expression of HLA-DR and

CD161. CD16+ CD8+ TEMRA-1 cells only displayed low

expression of HLA-DRA and KLRB1 (encoding CD161) in the

scRNA-seq data (CD161- HLA-DR-), whereas subsets 2-5

expressed high levels of KLRB1 (CD161+ HLA-DR-), and

CD16+ CD8+ TEMRA-6 cells displayed high expression of HLA-

DRA (CD161- HLA-DR+) (Figure 6A). Flow cytometry

identified all three subsets of CD16+ CD8+ T cells (Figure 6A).

Even though CD161- HLA-DR+ (CD16+ CD8+ TEMRA-6 cells)

were least frequent in both datasets, flow cytometry did not show

higher frequencies of this population in severely and critically ill

patients (Figure S7B). Additionally, while in flow cytometry data

CD161- HLA-DR- cells (CD16+ CD8+ TEMRA-1 cells) accounted

for the majority of CD16+ CD8+ T cells, in scRNA-seq data
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subsets 2-5 (CD161+ HLA-DR-) made up the largest proportion

of CD16+ CD8+ T cells (Figure S7B).

Next, we aimed at identifying CD16+ CD8+ T cells in the

large PBMC-derived CD8+ reference dataset. Most of our CD8+

NK-like TEMRA cells mapped onto one distinct subcluster

(cluster CD8+_T_1) in the integrated dataset (Figure 2G).

Projecting all cells from this subcluster to the UMAP of the

CD8+ T cell reference dataset revealed that the NK-like CD8+ T

cell population represented a distinct region in the UMAP space

of the reference dataset (Figure 6B). We verified expression of

FCGR3A in these reference NK-like CD8+ T cells and observed

strong expression of FCGR3A (Figure S7C).

Next, we investigated whether genes that characterize CD16+

CD8+ TEMRA cells have a relevance for disease severity. We

therefore performed differential gene expression analysis

between CD16+ CD8+ TEMRA cells from mild and severe

COVID-19 (Table S9). Among the differentially expressed

genes, we identified several genes that overlapped with highly

significant marker genes of our CD8+ NK-like TEMRA population

(Table S3). We combined marker genes that were differentially

upregulated in mild COVID-19 into a ‘mild disease score’ and

marker genes differentially upregulated in severe disease into a

‘severe disease score’(Figure 6C). Indeed, patients with mild

COVID-19 displayed significantly higher “mild disease score”

values, while severely affected patients displayed highest “severe

disease score” values in their CD8+ NK-like T cells (Figure 6D).

To independently validate our scores, we subsetted all cells from

the reference dataset that mapped together with our CD8+ NK-

like TEMRA cells in the integrated dataset (Figures S7D–F) and

calculated score values for these reference cells. Also in the

reference data, control subjects and patients with mild/moderate

SARS-CoV2 infection displayed significantly higher “mild

disease score” values and patients with severe infection

displayed highest “severe disease score” values (Figure 6D).

Strikingly, patients that succumbed to COVID-19 displayed

lowest mild disease score, and highest severe disease score

values as compared to patients who survived and healthy

controls (Figure 6D). However, it is important to note, that

due to the nature of single-cell experiments and the comparison

of thousands of cells, even minor changes can yield significant

p-values.

Mapping these disease scores back to our whole dataset as

well as the whole CD8+ reference dataset revealed high

specificity of the mild disease score to CD8+ NK-like cells,

while the severe disease score did not show specificity to a

certain population (Figures 6E, S7G–I). In summary, our

molecular signature that was specific to CD16+ CD8+ T cells

was significantly elevated in CD16+ CD8+ T cells from

individuals with mild COVID-19, while the molecular

signature that was elevated in patients with severe SARS-CoV-

2 infection did not show the same specificity for CD16+ CD8+ T

cells. Thus, we conclude that a proper and specific NK-like

differentiation of CD8+ effector T cells might be protective
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against severe COVID-19, while a dysfunctional NK-like

d i ff e ren t ia t ion wi th nonspec ific changes such as

hyperactivation in NK-like CD8+ T cells might be a

mechanism involved in the pathogenesis of severe COVID-19.
Differential cell-cell interactions
could drive differences in NK-like
CD8+ T cell differentiation

To investigate factors that could drive NK-like differentiation

of CD8+ T cells, we integrated our dataset with selected samples

(Table S10) from the same publicly available single-cell dataset as

described above (34) and performed cell-cell interaction analysis.

We first focused our analysis on NK cell-related interactions

between non-CD8+ populations and NK-like TEMRA cells

(Figures 6F, S8A, B) and investigated differences in these

interactions between mild and severe SARS-CoV-2 infection

(Figure 6F). Differential interaction analysis (Table S11) revealed

differences in various interactions that have been related to

NK cell development (65). Particularly, interactions between

ligands on non-CD8+ populations and KIRs on NK-like TEMRA

cells seemed to be more abundant in mild COVID-19

(Figures 6F, S8A, C). Moreover, we observed increased IL15

interactions in mild disease (Figure 6F). IL15 has been shown to

be a highly relevant cytokine in the development of NK cells (66–

68). Next, we compared predicted ligand-receptor (LR) scores for

selected interactions, this time considering all CD8+ T cell

populations as receptor populations (Figure 6G, S8C).

Interestingly, LR-Scores for IL15-IL2RB interactions were

significantly higher in mild COVID-19 compared to severe

COVID-19 (Figure 6G). Moreover, LR-Scores for various

interactions between MHC-I molecules and NK cell receptors

were significantly higher in mild SARS-CoV-2 infection

(Figures 6G, S8C). KIR2DL1, KIR2DL3, KIR3DL1 and

KIR3DL2 (Figures 6G, S8C) are inhibitory NK cell receptors

and enhanced interactions via these receptors on CD8+ T cells

could indicate a more balanced functional regulation of CD8+ T

cells in mild COVID-19. In contrast, we observed significantly

increased LR-Scores for various CC chemokine-interactions in

severe COVID-19 compared to mild COVID-19 (Figure S8C). In

summary, IL15 could be involved in the acquisition of an NK-like

phenotype during CD8+ effector differentiation in SARS-CoV-2

infection. Differences in NK cell-related interactions as well as

differences in cytokine milieu could drive the observed differences

in CD16+ CD8+ TEMRA cells between mild and severe disease.
Discussion

In this study we explored cellular heterogeneity within the

CD8+ T cell compartment in SARS-CoV-2 infection and

investigated differences between mild and severe COVID-19.
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We observed large heterogeneity among CD8+ T cells,

representing different functional subsets. A subpopulation of

exhausted CD8+ T cells was observed in severe COVID-19 in our

scRNA-seq dataset. However, whereas flow cytometry indicated

increased exhaustion in COVID-19, we did not observe

significant differences between mild and severe infection.

Targeted analysis of exhausted T cells in a large reference

dataset ultimately revealed significantly higher exhaustion

scores in patients with severe SARS-CoV-2 infection, as well as

in patients who died due to COVID-19. These differences were

even more pronounced in lung-derived CD8+ T cells, suggesting

that the location of CD8+ T cells is relevant for the occurrence of

CD8+ T cell exhaustion in COVID-19. Our findings are in line

with previous reports about an increase in exhaustion

characteristics in CD8+ T cells in severe SARS-CoV-2 infection

(50, 69, 70). Trajectory-analysis indicated two differentiation

pathways, one corresponding to short-lived effector cell

differentiation and one corresponding to T cell exhaustion.

Upregulation of NK cell-related genes along the SLEC lineage

pointed us to a subset of terminally differentiated CD8+ effector

T cells that were characterized by the expression of FCGR3A

(encoding CD16), IKZF2 (encoding the transcription factor

Helios) and KLRF1 (encoding the NK cell receptor NKp80).

Deeper investigation of this NK-like CD8+ TEMRA population

revealed various CD16+ CD8+ T cell subsets.

A first subset (CD16+ CD8+ TEMRA-1) was present in all

three conditions and was characterized by moderate expression

of FCGR3A, surface expression of IL7R as well as a relatively low

NK-like phenotype. Besides this first CD16+ CD8+ TEMRA

population, four strongly clonally expanded subsets (CD16+

CD8+ TEMRA-2 to -5), characterized by high expression of

FCGR3A, KLRF1 and surface expression of CD161 were

observed in all conditions, whereas a highly activated and less

expanded subset (CD16+ CD8+ TEMRA-6) was enriched in severe

cases of COVID-19.

Differential gene expression analysis suggested substantial

differences in activation status and expression of NK cell

receptors in CD16+ CD8+ TEMRA cells between mild and

severe disease and applying functional scores to CD16+ CD8+

TEMRA-1 cells revealed higher cytotoxicity, a higher exhaustion

signature as well as decreased NK cell signature scores in severe

SARS-CoV-2 infection as compared to mild.

We confirmed the existence of different CD16+ CD8+ T cell

subsets by flow cytometry, although the relative proportions of

the different subsets in all CD16+ CD8+ T cells differed between

flow cytometry and scRNA-seq. These differences could be

explained by two crucial points. First, there is a discrepancy

between gene expression and protein expression, such that a

high abundance of mRNA of a gene does not translate 1:1 into a

high expression of the corresponding protein. Because the

CD16+ CD8+ subpopulations in the scRNA-seq dataset are

defined by their transcriptome, whereas in flow cytometry they

are defined at the protein level, this may lead to shifts in the
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frequency distribution of the subpopulations. Second, however,

scRNA-seq is much better suited to characterize subtle

di fferences between cel l populat ions , whereas the

discrimination of subtypes in flow cytometry was based on

two markers only.

CD16+ CD8+ T cell subsets have been observed in various

conditions. In chronic, untreated HIV infection a CD16+ CD8+

population with high expression of NKp80 and Helios

transcription factor has been described (54). Previously,

Björkström et al. had detected a similar, and clonally expanded

subpopulation in chronic hepatitis C virus (HCV) infection (55).

Both papers reported the ability of CD16+ CD8+ T cells to

mediate ADCC or at least effector functions in response to

engagement of CD16 (54, 55). These populations strongly

resembled our CD16+ CD8+ TEMRA-2 to -5 populations,

suggesting a potential relevance for ADCC in the antiviral

response to SARS-CoV-2 infection. Moreover, CD16+ CD8+

TEMRA-2 to -5 cells displayed strong surface expression of

CD161. CD161 is an NK cell receptor that has been suggested

to mark long-lived antigen-specific T cells within the CD4+

compartment (71). Additionally, CD161+ T cells have been

reported to respond to IL-12 and IL-18 in a TCR-independent

manner (72). We therefore hypothesize that properly

differentiated ‘bona fide’ CD16+ CD8+ T cells also contribute

to antiviral defense by TCR-independent mechanisms through

their NK-like differentiation. Of particular interest is the fact that

ADCC can also be mediated by non-neutralizing antibodies,

which may have particular relevance for the design of future

vaccines (73, 74).

On the other hand, a highly activated population of CD16+

CD8+ TEMRA cells has recently been described in severe COVID-

19 and the authors suggested a role for these cells in

immunopathology of severe infection by ADCC-mediated

endothelial damage (56). The existence of pathogenic T cell

populations has already been suggested by others in COVID-19

(14) and other diseases (75, 76). Interestingly, the highly

activated phenotype and the specificity to the severe disease

condition reported by Georg et al. resembled the CD16+ CD8+

TEMRA subset 6 in our dataset. We therefore hypothesize that

CD16+ CD8+ T cells are not inherently pathological in nature.

We propose a model in which terminally differentiated CD16+

CD8+ T cells develop in the context of SARS-CoV-2 infection as

part of effector differentiation, but in which differences in further

differentiation of these cells eventually occur depending on the

surrounding cytokine milieu, as well as stimulation of specific

surface receptors. Adequate differentiation conditions the

emergence of the ‘bona fide’ IZKF2+ KLRF1+ CD16+ CD8+ T

cells, which may contribute to the clearance of the virus through

ADCC and thus protect against severe courses. Defective NK-

like differentiation could lead to the emergence of the highly

activated and potentially pathogenic CD16+ CD8+ subtypes. It is

conceivable that these dysfunctional subpopulations contribute

to disease progression as suggested by Georg et al. (56). This is
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supported by the observation that a gene set, differentially

expressed in NK-like CD8+ TEMRA cells in mild COVID-19

when compared to severe disease, is highly specific to NK-like

CD8+ TEMRA cells, whereas a gene set differentially expressed in

NK-like CD8+ TEMRA cells in severe disease does not show high

specificity to this population. Thus, high expression of NK-like

CD8+ TEMRA-specific genes is related to mild disease while

unspecific changes in CD16+ CD8+ T cells, especially high

activation state, seems to be related to severe disease.

Indeed, a recent single-cell analysis identified CD16+ CD8+

T cells in smokers and non-smokers (77). When compared to

non-smokers, CD16+ CD8+ T cells in smokers displayed

elevated TOX expression, a transcription factor involved in T

cell exhaustion (78), indicating a dysfunctional state of these

cells (77). Further, expression of certain cytotoxic effector

molecules as well as certain MHC class II genes was elevated

in CD16+ CD8+ T cells from smokers (77). These results clearly

illustrate that under certain circumstances, CD16+ CD8+ T

cells can acquire dysfunctional phenotypes. Interestingly,

Georg et al. showed that C3a is able to induce differentiation

of CD16+ CD8+ T cells (56). To gain further insights into

factors that might drive the differentiation of CD16+ CD8+ T

cells, we performed cell-cell interaction analysis. When

comparing predicted interactions with CD8+ T cells between

mild and severe SARS-CoV-2 infection, we observed stronger

interactions with KIR receptors (KIR3DL2, KIR2DL1,

KIR2DL3) in CD16+ CD8+ TEMRA cells derived from mildly

affected individuals. It is known that inhibitory KIRs

counteract activating signals downstream of the TCR (79).

Additionally, in transgenic mice, ligation of KIR2DL3 by its

cognate MHC class I ligand has been shown to reduce

activation-induced cell death, thereby promoting survival of

a subset of CD8+ memory cells (80). These findings may

partially explain the differences in activation status between

CD16+ CD8+ TEMRA cells in mild and severe disease.

Furthermore, filtering our cell-cell interaction data for

mechanisms involved in NK-cell differentiation revealed

increased IL-15 signaling towards CD8+ T cells in mild

COVID-19 (Figure 6G). Previous studies have demonstrated

the ability of IL-15 to induce an NK-like phenotype in CD8+ T

cells (81, 82), suggesting differences in IL-15 signaling between

mild and severe SARS-CoV-2 infection as a potential

mechanism that drives differences in the generation of

different CD8+ NK-like T cell phenotypes.

Nonetheless, our study has some limitations. A main

limitation of our study is the small number of healthy

controls, which limits the interpretation of comparisons with

the healthy control group. To overcome this limitation, we

validated our main observations and key points in a large

reference dataset. Another limitation is the heterogeneity of

diseased patients with respect to the duration of infection at

the time point of sampling, a limitation that is also present in the

reference dataset and that must be taken into account when
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interpreting the results. Finally, when interpreting statistical

comparisons in single-cell datasets, it must be considered that

due to the comparison of thousands of single cells, even smaller

changes can cause statistical significance.

In summary, by investigating CD8+ T cells in SARS-CoV-2

infection at high resolution, we observed different subsets of NK-

like CD16+ CD8+ TEMRA cells, a population that only few reports

have observed before. We deeply characterized these cells and

suggest a role for CD16+ CD8+ T cells in the immune response

against SARS-CoV-2 by mediating ADCC. By inferring cell-cell

interactions, we identify factors that could be involved in the

differentiation of CD16+ CD8+ T cells. We suggest that

differences in the cytokine milieu in severe as compared to

mild SARS-CoV-2 infection result in disturbances of this NK-

like differentiation process, potentially leading to the generation

of dysfunctional or even pathogenic CD16+ CD8+ T cell subsets

that are characterized by high activation status and low NK-like

phenotype, whereas properly differentiated NK-like TEMRA cells

that acquire NK cell specific characteristics confer protection

against the virus. Although we validated our results in a flow

cytometry and in a large scRNA-seq dataset, future studies will

have to validate our findings in larger cohorts to dissect the

factors that drive NK-like differentiation of CD8+ T cells as well

as their role in health and disease. However, the ability to elicit

ADCC represents another mechanism for combating the virus

and could also represent a crucial role for non-neutralizing

antibodies in viral defense, which would also affect future

vaccine designs.
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