1,713 research outputs found
IACT observations of gamma-ray bursts: prospects for the Cherenkov Telescope Array
Gamma rays at rest frame energies as high as 90 GeV have been reported from
gamma-ray bursts (GRBs) by the Fermi Large Area Telescope (LAT). There is
considerable hope that a confirmed GRB detection will be possible with the
upcoming Cherenkov Telescope Array (CTA), which will have a larger effective
area and better low-energy sensitivity than current-generation imaging
atmospheric Cherenkov telescopes (IACTs). To estimate the likelihood of such a
detection, we have developed a phenomenological model for GRB emission between
1 GeV and 1 TeV that is motivated by the high-energy GRB detections of
Fermi-LAT, and allows us to extrapolate the statistics of GRBs seen by lower
energy instruments such as the Swift-BAT and BATSE on the Compton Gamma-ray
Observatory. We show a number of statistics for detected GRBs, and describe how
the detectability of GRBs with CTA could vary based on a number of parameters,
such as the typical observation delay between the burst onset and the start of
ground observations. We also consider the possibility of using GBM on Fermi as
a finder of GRBs for rapid ground follow-up. While the uncertainty of GBM
localization is problematic, the small field-of-view for IACTs can potentially
be overcome by scanning over the GBM error region. Overall, our results
indicate that CTA should be able to detect one GRB every 20 to 30 months with
our baseline instrument model, assuming consistently rapid pursuit of GRB
alerts, and provided that spectral breaks below 100 GeV are not a common
feature of the bright GRB population. With a more optimistic instrument model,
the detection rate can be as high as 1 to 2 GRBs per year.Comment: 28 pages, 24 figures, 4 tables, submitted to Experimental Astronom
Rectal Transmission of Transmitted/Founder HIV-1 Is Efficiently Prevented by Topical 1% Tenofovir in BLT Humanized Mice
Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (nâ=â43) were rectally inoculated with either the primary isolate HIV-1(JRCSF) or the MSM-derived transmitted/founder (T/F) virus HIV-1(THRO) within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1(JRCSF) and HIV-1(THRO), respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank pâ=â0.03) for HIV-1(JRCSF) and 0% (0/6; log rank pâ=â0.02) for HIV-1(THRO). This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides
Dissipation of earthward propagating flux rope through reâreconnection with geomagnetic field: An MMS case study
Threeâdimensional global hybrid simulations and observations have shown that earthwardâmoving flux ropes (FRs) can undergo magnetic reconnection (or reâreconnection) with the nearâEarth dipole field to create dipolarization front (DF)âlike signatures that are immediately preceded by brief intervals of negative BZ. The simultaneous erosion of the southward BZ field at the leading edge of the FR and continuous reconnection of lobe magnetic flux at the Xâline tailward of the FR result in the asymmetric southânorth BZ signature in many earthwardâmoving FRs and possibly DFs with negative BZ dips prior to their observation. In this study, we analyzed Magnetospheric MultiScale (MMS) observation of fields and plasma signatures associated with the encounter of an ion diffusion region ahead of an earthwardâmoving FR on 3 August 2017. The signatures of this reâreconnection event were (i) +/â BZ reversal, (ii) â/+ bipolarâtype quadrupolar Hall magnetic fields, (iii) northward superâAlfvĂŠnic electron outflow jet of ~1,000â1,500 km/s, (iv) Hall electric field of ~15 mV/m, (v) intense currents of ~40â100 nA/m2, and (vi) J¡EⲠ~0.11 nW/m3. Our analysis suggests that the MMS spacecraft encounters the ion and electron diffusion regions but misses the Xâline. Our results are in good agreement with particleâinâcell simulations of Lu et al. (2016, https://doi.org/10.1002/2016JA022815). We computed a dimensionless reconnection rate of ~0.09 for this reâreconnection event and through modeling, estimating that the FR would fully dissipate by â16.58 RE. We demonstrated pertubations in the highâlatitude ionospheric currents at the same time of the dissipation of earthwardâmoving FRs using groundâ and spaceâbased measurements
A Kinase-Independent Role for the Rad3ATR-Rad26ATRIP Complex in Recruitment of Tel1ATM to Telomeres in Fission Yeast
ATM and ATR are two redundant checkpoint kinases essential for the stable maintenance of telomeres in eukaryotes. Previous studies have established that MRN (Mre11-Rad50-Nbs1) and ATRIP (ATR Interacting Protein) interact with ATM and ATR, respectively, and recruit their partner kinases to sites of DNA damage. Here, we investigated how Tel1ATM and Rad3ATR recruitment to telomeres is regulated in fission yeast. Quantitative chromatin immunoprecipitation (ChIP) assays unexpectedly revealed that the MRN complex could also contribute to the recruitment of Tel1ATM to telomeres independently of the previously established Nbs1 C-terminal Tel1ATM interaction domain. Recruitment of Tel1ATM to telomeres in nbs1-c60Î cells, which lack the C-terminal 60 amino acid Tel1ATM interaction domain of Nbs1, was dependent on Rad3ATR-Rad26ATRIP, but the kinase domain of Rad3ATR was dispensable. Thus, our results establish that the Rad3ATR-Rad26ATRIP complex contributes to the recruitment of Tel1ATM independently of Rad3ATR kinase activity, by a mechanism redundant with the Tel1ATM interaction domain of Nbs1. Furthermore, we found that the N-terminus of Nbs1 contributes to the recruitment of Rad3ATR-Rad26ATRIP to telomeres. In response to replication stress, mammalian ATRâATRIP also contributes to ATM activation by a mechanism that is dependent on the MRN complex but independent of the C-terminal ATM interaction domain of Nbs1. Since telomere protection and DNA damage response mechanisms are very well conserved between fission yeast and mammalian cells, mammalian ATRâATRIP may also contribute to the recruitment of ATM to telomeres and to sites of DNA damage independently of ATR kinase activity
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at â s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fbâ1 of â s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV
The azimuthal anisotropy of charged particles in PbPb collisions at
nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS
detector at the LHC over an extended transverse momentum (pt) range up to
approximately 60 GeV. The data cover both the low-pt region associated with
hydrodynamic flow phenomena and the high-pt region where the anisotropies may
reflect the path-length dependence of parton energy loss in the created medium.
The anisotropy parameter (v2) of the particles is extracted by correlating
charged tracks with respect to the event-plane reconstructed by using the
energy deposited in forward-angle calorimeters. For the six bins of collision
centrality studied, spanning the range of 0-60% most-central events, the
observed v2 values are found to first increase with pt, reaching a maximum
around pt = 3 GeV, and then to gradually decrease to almost zero, with the
decline persisting up to at least pt = 40 GeV over the full centrality range
measured.Comment: Replaced with published version. Added journal reference and DO
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy
A search for new physics is performed in events with two same-sign isolated
leptons, hadronic jets, and missing transverse energy in the final state. The
analysis is based on a data sample corresponding to an integrated luminosity of
4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of
7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of
140 increase in integrated luminosity over previously published results. The
observed yields agree with the standard model predictions and thus no evidence
for new physics is found. The observations are used to set upper limits on
possible new physics contributions and to constrain supersymmetric models. To
facilitate the interpretation of the data in a broader range of new physics
scenarios, information on the event selection, detector response, and
efficiencies is provided.Comment: Published in Physical Review Letter
Measurement of jet fragmentation into charged particles in pp and PbPb collisions at sqrt(s[NN]) = 2.76 TeV
Jet fragmentation in pp and PbPb collisions at a centre-of-mass energy of
2.76 TeV per nucleon pair was studied using data collected with the CMS
detector at the LHC. Fragmentation functions are constructed using
charged-particle tracks with transverse momenta pt > 4 GeV for dijet events
with a leading jet of pt > 100 GeV. The fragmentation functions in PbPb events
are compared to those in pp data as a function of collision centrality, as well
as dijet-pt imbalance. Special emphasis is placed on the most central PbPb
events including dijets with unbalanced momentum, indicative of energy loss of
the hard scattered parent partons. The fragmentation patterns for both the
leading and subleading jets in PbPb collisions agree with those seen in pp data
at 2.76 TeV. The results provide evidence that, despite the large parton energy
loss observed in PbPb collisions, the partition of the remaining momentum
within the jet cone into high-pt particles is not strongly modified in
comparison to that observed for jets in vacuum.Comment: Submitted to the Journal of High Energy Physic
- âŚ