101 research outputs found

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Role of Homer Proteins in the Maintenance of Sleep-Wake States

    Get PDF
    Sleep is an evolutionarily conserved process that is linked to diurnal cycles and normal daytime wakefulness. Healthy sleep and wakefulness are integral to a healthy lifestyle; this occurs when an organism is able to maintain long bouts of both sleep and wake. Homer proteins, which function as adaptors for group 1 metabotropic glutamate receptors, have been implicated in genetic studies of sleep in both Drosophila and mouse. Drosophila express a single Homer gene product that is upregulated during sleep. By contrast, vertebrates express Homer as both constitutive and immediate early gene (H1a) forms, and H1a is up-regulated during wakefulness. Genetic deletion of Homer in Drosophila results in fragmented sleep and in failure to sustain long bouts of sleep, even under increased sleep drive. However, deletion of Homer1a in mouse results in failure to sustain long bouts of wakefulness. Further evidence for the role of Homer1a in the maintenance of wake comes from the CREB alpha delta mutant mouse, which displays a reduced wake phenotype similar to the Homer1a knockout and fails to up-regulate Homer1a upon sleep loss. Homer1a is a gene whose expression is induced by CREB. Sustained behaviors of the sleep/wake cycle are created by molecular pathways that are distinct from those for arousal or short bouts, and implicate an evolutionarily-conserved role for Homer in sustaining these behaviors

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al

    Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification

    Get PDF
    Background The purpose of this study was to determine the cerebrovascular risk stratification potential of baseline degree of stenosis, clinical features, and ultrasonic plaque characteristics in patients with asymptomatic internal carotid artery (ICA) stenosis. Methods This was a prospective, multicenter, cohort study of patients undergoing medical intervention for vascular disease. Hazard ratios for ICA stenosis, clinical features, and plaque texture features associated with ipsilateral cerebrovascular or retinal ischemic (CORI) events were calculated using proportional hazards models. Results A total of 1121 patients with 50% to 99% asymptomatic ICA stenosis in relation to the bulb (European Carotid Surgery Trial [ECST] method) were followed-up for 6 to 96 months (mean, 48). A total of 130 ipsilateral CORI events occurred. Severity of stenosis, age, systolic blood pressure, increased serum creatinine, smoking history of more than 10 pack-years, history of contralateral transient ischemic attacks (TIAs) or stroke, low grayscale median (GSM), increased plaque area, plaque types 1, 2, and 3, and the presence of discrete white areas (DWAs) without acoustic shadowing were associated with increased risk. Receiver operating characteristic (ROC) curves were constructed for predicted risk versus observed CORI events as a measure of model validity. The areas under the ROC curves for a model of stenosis alone, a model of stenosis combined with clinical features and a model of stenosis combined with clinical, and plaque features were 0.59 (95% confidence interval [CI] 0.54-0.64), 0.66 (0.62-0.72), and 0.82 (0.78-0.86), respectively. In the last model, stenosis, history of contralateral TIAs or stroke, GSM, plaque area, and DWAs were independent predictors of ipsilateral CORI events. Combinations of these could stratify patients into different levels of risk for ipsilateral CORI and stroke, with predicted risk close to observed risk. Of the 923 patients with <70% stenosis, the predicted cumulative 5-year stroke rate was <5% in 495, 5% to 9.9% in 202, 10% to 19.9% in 142, and <20% in 84 patients. Conclusion Cerebrovascular risk stratification is possible using a combination of clinical and ultrasonic plaque features. These findings need to be validated in additional prospective studies of patients receiving optimal medical intervention alone. Copyright © 2010 by the Society for Vascular Surgery

    A Wide Extent of Inter-Strain Diversity in Virulent and Vaccine Strains of Alphaherpesviruses

    Get PDF
    Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence heterogeneity, which likely seeds future strain evolution

    Long memory estimation for complex-valued time series

    Get PDF
    Long memory has been observed for time series across a multitude of fields and the accurate estimation of such dependence, e.g. via the Hurst exponent, is crucial for the modelling and prediction of many dynamic systems of interest. Many physical processes (such as wind data), are more naturally expressed as a complex-valued time series to represent magnitude and phase information (wind speed and direction). With data collection ubiquitously unreliable, irregular sampling or missingness is also commonplace and can cause bias in a range of analysis tasks, including Hurst estimation. This article proposes a new Hurst exponent estimation technique for complex-valued persistent data sampled with potential irregularity. Our approach is justified through establishing attractive theoretical properties of a new complex-valued wavelet lifting transform, also introduced in this paper. We demonstrate the accuracy of the proposed estimation method through simulations across a range of sampling scenarios and complex- and real-valued persistent processes. For wind data, our method highlights that inclusion of the intrinsic correlations between the real and imaginary data, inherent in our complex-valued approach, can produce different persistence estimates than when using real-valued analysis. Such analysis could then support alternative modelling or policy decisions compared with conclusions based on real-valued estimation

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
    • 

    corecore