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Abstract

Long memory has been observed for time series across a multitude of fields, and the accurate estimation of such dependence,

for example via the Hurst exponent, is crucial for the modelling and prediction of many dynamic systems of interest. Many

physical processes (such as wind data) are more naturally expressed as a complex-valued time series to represent magnitude and

phase information (wind speed and direction). With data collection ubiquitously unreliable, irregular sampling or missingness

is also commonplace and can cause bias in a range of analysis tasks, including Hurst estimation. This article proposes a new

Hurst exponent estimation technique for complex-valued persistent data sampled with potential irregularity. Our approach

is justified through establishing attractive theoretical properties of a new complex-valued wavelet lifting transform, also

introduced in this paper. We demonstrate the accuracy of the proposed estimation method through simulations across a range

of sampling scenarios and complex- and real-valued persistent processes. For wind data, our method highlights that inclusion

of the intrinsic correlations between the real and imaginary data, inherent in our complex-valued approach, can produce

different persistence estimates than when using real-valued analysis. Such analysis could then support alternative modelling

or policy decisions compared with conclusions based on real-valued estimation.

Keywords Complex-valued time series · Hurst exponent · Irregular sampling · Long-range dependence · Wavelets

1 Introduction

Complex-valued time series arise in many scientific fields

of interest, for example digital communication and signal

processing (Curtis 1985; Martin 2004), environmental series

(Gonella 1972; Lilly and Gascard 2006; Adali et al. 2011)

and physiology (Rowe 2005). Modelling and analysis of such

series in the complex domain is not only natural, but also

convenient. In addition, complex-valued time series mod-

els are often able to represent more realistic behaviour in

observed physical processes; see, for example, Mandic and

Goh (2009) and Sykulski et al. (2017). A particular modelling

Electronic supplementary material The online version of this article

(https://doi.org/10.1007/s11222-018-9820-8) contains supplementary

material, which is available to authorized users.

B Matthew A. Nunes

m.nunes@lancaster.ac.uk

Marina I. Knight

Marina.Knight@york.ac.uk

1 Department of Mathematics, University of York, Heslington,

York YO10 5DD, UK

2 Department of Mathematics and Statistics, Fylde College,

Lancaster University, Lancaster LA1 4YF, UK

aspect which has received recent attention is the property of

impropriety or noncircularity, describing series whose statis-

tics are not rotationally invariant in the complex plane [for

a precise definition, the reader is directed to Sykulski and

Percival (2016)]. Such models of improper processes have

seen growing interest in the statistics community; see, for

example, Schreier and Scharf (2003), Rubin-Delanchy and

Walden (2008) and Mohammadi and Plataniotis (2015). Fur-

thermore, complex-valued analysis of real-valued data has

been shown to be beneficial in a number of settings; see,

for example, Olhede and Walden (2005) and Hamilton et al.

(2017). For a comprehensive introduction to complex-valued

signals, we refer the reader to Schreier and Scharf (2010); see

Adali et al. (2011) and Walden (2013) for recent advances in

modelling complex-valued signals.

Recently, there has been an increased interest in models

for complex-valued stochastic processes exhibiting long-

range dependence (i.e. persistent) behaviour, which has seen

extensions of real-valued process modelling frameworks for

the complex-valued fractional Brownian motion (fBM) and

Matérn processes, see, respectively, Coeurjolly and Porcu

(2017) and Lilly et al. (2017), as well as for (improper) frac-

tional Gaussian noise (Sykulski and Percival 2016). For these
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constructions, just as for real-valued processes (Hurst 1951;

Mandelbrot and Ness 1968), the degree of memory can still

be quantified by means of a single parameter, the Hurst expo-

nent parameter (Amblard et al. 2012; Sykulski and Percival

2016). Accurate estimation of the Hurst parameter offers

valuable insight into a multitude of modelling and analysis

tasks, such as model calibration and prediction (Beran et al.

2013; Rehman and Siddiqi 2009; Knight et al. 2017).

Complex-valued processes, both proper (circular) and

improper (noncircular), are relevant across fields such as

oceanography and geophysics (Adali et al. 2011; Sykulski

et al. 2017), where data are typically difficult to acquire

and will frequently suffer from omissions/ missingness or

be irregularly sampled (see, e.g. Fig. 1). In the next section,

we describe datasets arising in environmental science that

feature missing observations, which can be examined for

long memory with a complex-valued representation. How-

ever, we note here that data from other scientific areas may

benefit from analysis with our proposed methodology; see

Sect. 6 for further discussion.

1.1 Persistence in wind series

Our motivating data example in this article arises from cli-

matology. More specifically, wind series have been analysed

extensively in the literature for modelling local weather pat-

terns and spread of pollutants, as well as global climate

dynamics. Long memory in wind series has been established

by a number of authors; see, for example, Haslett and Raftery

(1989), Chang et al. (2012) and Piacquadio and de la Barra

(2014) and references therein. Specifically, Hurst exponent

estimates for wind speed series on a range of sampling reso-

lutions, including the 5 min scale considered here, have been

shown to be in the range 0.7–0.9, indicating strong long-range

dependence; see, for example, Fortuna et al. (2014). Accurate

Hurst exponent estimation is used for accurate forecasting

of wind speed, for example to assess future power yields

(Haslett and Raftery 1989; Bakker and van den Hurk 2012).

Wind speed analysis in the literature is predominantly per-

formed using real-valued data, such as (magnitude) wind

speed series. However, more recently, a number of authors

have advocated modelling wind measurements as complex-

valued, developing analysis tools which exploit both speed

and directional information of wind time series; see, for

example, Goh et al. (2006) and Tanaka and Mandic (2007).

These complex-valued modelling approaches have resulted

in methodology for improved prediction for series such as

those considered in this article (Mandic et al. 2009; Dowell

et al. 2014). To our knowledge, long memory estimation for

stationary time series is exclusively performed using real-

valued time series. In this article, we analyse the degree of

persistence (long memory intensity) exhibited by complex-

valued wind measurements, i.e. series which have both wind

speed and direction, using new complex-valued Hurst esti-

mation methodology we propose here.

The wind series we consider in this article consists of two

datasets measured at a 5 min resolution from the Iowa Depart-

ment of Transport’s Automated Weather Observing System

(AWOS). The (speed and angular) measurements for both

datasets are available at http://mesonet.agron.iastate.edu/

AWOS/. We firstly analyse data obtained from the Atlantic

Municipal Airport (AIO) monitoring site over a period from

15 April 2017 until 30 April 2017. Whilst the sampling inter-

val for the measurements is reported as 5 min, due to a number

of reasons, for example faulty recording devices, the data in

fact feature missingness which results in a mix of sampling

intervals—our first dataset has intervals ranging from 5 to

15 min.

Since we have both speed and directional information for

the dataset, we shall view the series using a complex-valued

representation. The real and imaginary components of the

series are shown in Fig. 1a, b, together with the locations

of the missing data (depicted by triangles). The length of

the first series is n = 3131 with an overall rate of miss-

ingness of 12%. Similar datasets from the Iowa monitoring

system have been previously studied in the literature for the

non-missing case but not in the context of Hurst estimation;

see, for example, Tanaka and Mandic (2007) and Adali et al.

(2011).

To explore the potential persistence in wind series, we

examine the autocorrelation in the real and imaginary parts

of the series, shown in Fig. 2a, b for the Wind A series. For

these data, both components show highly significant auto-

correlation over a range of lags, indicating long memory.

To further illustrate potential benefits of a more considered

analysis approach for such data, we also investigate a dataset

from the same monitoring site but for a different time peri-

ods, specifically, 30 April 2017 until 14 May 2017. For this

dataset, the majority of the data are observed at a spacing

of 5 min, but a significant amount have intra-measurement

sampling between 10 and 20 min resulting from a missing-

ness proportion of 20%; the series is of length n = 2942. We

have specifically chosen to examine this second time period

due to its high degree of missingness. The two components of

the complex-valued series can be seen in Fig. 1c, d (triangles

indicate missing series values).

Similar observations about potential long memory char-

acteristics can be made for the second complex-valued wind

series. In particular, both real and imaginary components

of the series show considerable autocorrelation over a large

range of lags (Fig. 2c, d).

In addition, plotting the series in the complex plane, we

see that both datasets exhibit a rotational behaviour, due to

the angular component of the series (Fig. 3). The series are

not symmetric, exhibiting clear noncircularity, suggesting a

model which allows for impropriety is appropriate for analy-
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Fig. 1 a Real component of the Wind A data series; b imaginary component of the Wind A data series; c real component of the Wind B data

series; d imaginary component of the Wind B data series. Red triangles indicate missing data locations. (Color figure online)

sis [for an in-depth discussion of these properties, the reader

is directed to e.g. Sykulski and Percival (2016)]. This reflects

similar observations on impropriety shown for other Iowa

AWOS data in Adali et al. (2011), as well as other wind

series (Mandic and Goh 2009).

1.2 Aim and structure of the paper

A feature of many geophysical series, such as described in

Sect. 1.1, is that there is a need to jointly analyse both com-

ponents of a bivariate signal in order to reveal a common

behaviour. Due to the natural representation in the complex

plane, one mathematical solution is to combine the two pieces

of information into a single, complex-valued series and anal-

yse its properties (Mandic and Goh 2009). Adopting this

approach thus calls for analysis techniques capable of dealing

with complex-valued data. Additionally, for many applica-

tions the process sampling structure is inherently irregular, as

the two components may be measured at irregular times, or

the data may be blighted by missingness due to measurement

device failures. In the real-valued case, the common prac-

tice of preprocessing the data to mitigate against irregular or

missing observations results in inaccuracies in long memory

estimation by traditional methods. More specifically, there is

now well-documented evidence that preprocessing by impu-

tation or interpolation as well as data aggregation leads to

123



Statistics and Computing

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(a)

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(b)

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(c)

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(d)

Fig. 2 a Autocorrelation for (a) the real component of the Wind A

series from Fig. 1; b the imaginary component of the Wind A series; c

the real component of the Wind B series from Fig. 1; and d the imagi-

nary component of the Wind B series (all treated as regularly spaced).

Both components of the two datasets show autocorrelation at large lags,

indicating persistent behaviour

overestimation of persistence; see, for example, Beran et al.

(2013), Zhang et al. (2014) or Knight et al. (2017).

In practice, to the authors’ best knowledge, the only tech-

nique that permits Hurst exponent estimation for complex-

valued processes is that of Coeurjolly and Porcu (2017) which

tackles the setting of regularly sampled (proper) complex-

valued fractional Brownian motion. Motivated by the serious

implications of inaccurate estimation in the real-valued

setting, in this work we propose the first methodologi-

cal approach that answers the timely challenge of accurate

assessment of long memory persistence for complex-valued

processes featuring regular or irregular sampling (including

missingness).

At the heart of our methodology is a second generation

wavelet-based approach. The reasoning behind this choice

is twofold: (1) (classical) wavelets have proved to be very

successful in the context of regularly sampled (real-valued)

time series with long memory and are considered the ‘right

domain’ of analysis (Flandrin 1998), and (2) for irregularly

sampled (real-valued) processes, or those featuring missing-

ness, the wavelet lifting algorithm of Knight et al. (2017) has

provided a first long memory estimation solution and was
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Fig. 3 Scatter plot of real and imaginary series values for a the Wind A data and b the Wind B series shown in Fig. 1. Both series exhibit

noncircular (improper) characteristics

shown to yield competitive results even for regularly sam-

pled data.

The main contributions of the work in this paper are as

follows. We propose (1) a novel lifting algorithm designed

to work on complex-valued data with a potentially irregular

sampling structure and (2) a Hurst parameter estimator for

complex-valued processes sampled with a regular or irreg-

ular structure. Our method will be shown to improve on

real-valued Hurst estimation results, including for regularly

spaced data.

The remainder of this article is organized as follows.

We begin, in Sect. 2, by reviewing (complex-valued) long

memory processes and giving an overview of wavelet lifting

transforms. Section 3 introduces our novel complex-valued

lifting transform, establishes its iterative bases construction

and theoretical results on its decorrelation properties. Sec-

tion 4 demonstrates how these properties can be exploited

to design our proposed lifting-based Hurst exponent esti-

mation procedure for complex-valued data sampled with

irregularity/ missingness. Section 5.1 contains a simulation

study evaluating the performance of our new method using

synthetic data. In Sect. 5.2, we consider the application

of our approach to the wind series datasets introduced in

Sect. 1.1, discussing the potential consequences of our anal-

ysis. Finally, Sect. 6 outlines some avenues of future work

and discusses other potential applications.

2 Review of complex-valued processes,
long-range dependence and wavelet
lifting

2.1 Complex-valued processes

Let us denote a (complex-valued) second-order stationary

time series by {X t } and its autocovariance function as γX (ti −
t j ) = E(X ti X t j

), under the assumption that E(X t ) = 0

and denoting by ·p complex conjugation. As the autoco-

variance function γX does not completely characterize a

complex-valued time series, we also make use of its com-

plementary or pseudo-covariance, rX (ti − t j ) = E(X ti X t j
),

again assuming E(X t ) = 0. In general, both autocovariances

are complex-valued and have the properties of Hermitian

symmetry and symmetry, respectively [see, e.g. Sykulski and

Percival (2016)].

In many applications, such as radar and communications,

processes are assumed to have the property that rX (·p) = 0

(Neeser and Massey 1993; Picinbono 1994; Adali et al.

2011); such processes are known as proper or circularly

symmetric and are completely determined by their autoco-

variance γX . In contrast, applications such as those described

in Schreier and Scharf (2010), Adali et al. (2011) and

Chandna and Walden (2017) deal with improper processes,

whereby there exists a lag τ such that rX (τ ) �= 0. Another

often encountered property is that of time reversibility; for

complex-valued processes, Didier and Pipiras (2011) have

shown that time reversibility results in complex-valued pro-

cesses with real-valued autocovariances, which is precisely

the setting under which Sykulski and Percival (2016) develop
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their exact simulation method for improper stationary Gaus-

sian processes.

2.2 Longmemory and its estimation

Classical literature for long-range behaviour of real-valued

processes shows that persistence is often characterized by

a parameter, such as the Hurst exponent, H , introduced to

the literature by Hurst (1951) in hydrology and its estima-

tion is treated across a large body of established literature,

for example Beran et al. (2013). Mandelbrot and Ness

(1968) introduced self-similar and related processes with

long memory, along with the associated statistical inference.

Extensions of fractional Brownian motion to the complex-

valued case, defined as a self-similar Gaussian process with

stationary increments, are dealt with in, for example, Coeur-

jolly and Porcu (2017) and Lilly et al. (2017). Put simply, the

property of self-similarity amounts to the preservation of the

process’ statistical properties in the face of rescaling, thus

naturally fostering the definition of the Hurst exponent.

Just as in the real-valued case, a complex-valued self-

similar process {X t } with parameter H satisfies X(at)
d=

aH X(t) for a > 0, H ∈ (0, 1) and where
d= means

equal in distribution (Coeurjolly and Porcu 2017). Note

that the self-similarity definition implies that both the real

and imaginary strands of the complex-valued process {X t }
evolve according to the same exponent H . The property of

self-similarity results into the fBM spectrum to behave as

fX (ω) = A2|ω|−2δ for frequencies ω, a constant A and

δ ∈ (1/2, 3/2). The spectral slope parameter δ is linked to

the aspect ratio of process rescaling for self-similar behaviour

as H = δ − 1/2 ∈ (0, 1) and also determines the degree of

persistence in the differenced version of the process, the frac-

tional Gaussian noise (Lilly et al. 2017). An example of such

a process is the improper fractional Gaussian noise with the

pseudo-covariance proportional to the autocovariance (both

real-valued), both proportional to τ 2δ−3 (Sykulski and Per-

cival 2016; Lilly et al. 2017).

Definition 1 (Lilly et al. 2017) A stationary (finite variance)

complex-valued process {X t } with real-valued autocovari-

ance γX is said to have long memory if γX (τ ) ∼ cγ |τ |−β

as |τ | → ∞ and β ∈ (0, 1), where ∼ means asymptotic

equality. In other words, the process autocovariance displays

long-term decay.

Equivalently, the autocovariance Fourier pair, namely the

spectral density, has the property that fX (ω) ∼ c f |ω|−α for

frequencies ω → 0 and α ∈ (0, 1) with α = 1−β = 2H −1.

In general, if 0.5 < H < 1 the process exhibits long mem-

ory, with higher H values indicating stronger dependence,

whilst if 0 < H < 0.5 the process has short memory. An

improper fractional Gaussian noise constructed as outlined

above (Sykulski and Percival 2016) with 1 < δ < 3/2 thus

has long memory (−β = 2δ−3 = 2H −2 ∈ (−1, 0); hence,

1/2 < H < 1).

For real-valued time series, estimation of the Hurst expo-

nent H traditionally takes place in the time domain (Mandel-

brot and Taqqu 1979; Bhattacharya et al. 1983; Taqqu et al.

1995; Giraitis et al. 1999; Higuchi 1990; Peng et al. 1994)

and/ or in the frequency domain by means of connections

to Fourier or wavelet spectrum decay, for example Lobato

and Robinson (1996), McCoy and Walden (1996), Whitcher

and Jensen (2000) and Abry et al. (2013). Recent works

that deal with long memory estimation in various settings

are Vidakovic et al. (2000), Shi et al. (2005), Hsu (2006),

Jung et al. (2010) and Coeurjolly et al. (2014). Some authors

have recently considered Hurst estimation using complex-

valued wavelets in the regularly spaced real-valued image

context; see Nelson and Kingsbury (2010), Jeon et al. (2014)

and Nafornita et al. (2014). Reviews comparing several tech-

niques for Hurst exponent estimation (for real-valued series)

can be found in, for example, Taqqu et al. (1995). Even when

only considering real-valued data, Knight et al. (2017) show

that methods designed for regularly spaced data often fail to

deliver a robust estimate if the time series is subject to miss-

ing observations or has been sampled irregularly, and in this

context they propose a lifting-based approach for Hurst esti-

mation. Whilst this approach serves well when the process is

real-valued, it cannot cope with complex-valued processes.

Coeurjolly and Porcu (2017) propose a method of estima-

tion in the setting of (circular) complex-valued fractional

Brownian motion assuming a regular sampling structure, but

cannot readily cope with sampling irregularity or measure-

ment dropout/ missingness.

2.3 Wavelet lifting paradigm for irregularly sampled
real-valued data

The lifting algorithm, first introduced by Sweldens (1995),

constructs ‘second-generation’ wavelets adapted for non-

standard data settings, such as intervals, surfaces, as well

as irregularly spaced data. Lifting has since been used

successfully for a variety of statistical problems dealing

with real-valued signals, including nonparametric regression,

spectral estimation and long memory estimation; see, for

example, Trappe and Liu (2000), Nunes et al. (2006), Knight

et al. (2012), Knight et al. (2017) and Hamilton et al. (2017).

For a recent review of lifting, the reader is directed to Jansen

and Oonincx (2005).

As our proposed lifting transform and subsequent long

memory estimation method both make use of a recently

developed lifting transform, the lifting one coefficient at a

time (LOCAAT) transform of Jansen et al. (2001), Jansen

et al. (2009), we shall briefly introduce it next.

Suppose a real-valued function f (·p) is observed at a

set of n, possibly irregular, locations or time points, x =
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(x1, . . . , xn) and is represented by {(xi , f (xi ) = fi )}n
i=1.

The lifting algorithm of Jansen et al. (2001) begins with the

f = ( f1, . . . , fn) values, known as scaling function val-

ues, together with an interval associated with each location,

xi , which represents the ‘span’ of that point. By performing

LOCAAT, we aim to transform the initial f into a set of, say,

L coarser scaling coefficients and (n − L) wavelet or detail

coefficients, where L is a desired ‘primary resolution’ scale.

This is achieved by repeating three steps: split, predict and

update. In the algorithm of Jansen et al. (2001), the split step

is performed by choosing a point to be removed (‘lifted’), jn ,

say. We denote this point by (x jn , f jn ) and identify its set of

neighbouring observations, In . The predict step estimates

f jn by using regression over the neighbouring locations In .

The prediction error (the difference between the true and

predicted function values), d jn or detail coefficient, is then

computed by

d jn = f jn −
∑

i∈In

an
i fi , (1)

where (an
i )i∈In

are the weights resulting from the regres-

sion procedure. For points with only one neighbour, the

prediction is simply d jn = f jn − fi . This prediction via

regression can of course be carried out using a variety of

weights. Notably, Hamilton et al. (2017) proposed to use

two (rather than just one) prediction filters and encompassed

the detail information into complex-valued wavelet coeffi-

cients. As more information was extracted from the signal,

this approach was shown to improve results for nonparamet-

ric regression and spectral/ coherence estimation settings,

but nevertheless is limited to real-valued signals. The update

step consists of updating the f -values of the neighbours of

jn used in the predict step using a weighted proportion of the

detail coefficient:

f
(updated)

i := fi + bn
i d jn , i ∈ In, (2)

where the weights (bn
i )i∈In

are subject to the constraint that

the algorithm preserves the signal mean value (Jansen et al.

2001, 2009). The interval lengths associated with the neigh-

bouring points are also updated to account for the effect of

the removal of jn . In effect, this attributes a portion of the

interval associated with the removed point to each neighbour.

These split, predict and update steps are then repeated on

the updated signal, and after each iteration a new wavelet

coefficient is produced. Hence, after say (n − L) removals,

the original data are transformed into L scaling and (n − L)

wavelet coefficients. This is similar in spirit to the classical

discrete wavelet transform (DWT) step which takes a signal

vector of length 2ℓ and through filtering operations produces

2ℓ−1 scaling and 2ℓ−1 wavelet coefficients.

An attractive feature of lifting schemes, including the

LOCAAT algorithm, is that the transform can be inverted

easily by reversing the split, predict and update steps.

The current scarcity of Hurst estimation techniques for

complex-valued processes, in a uniform, but even more so in

a non-uniform sampling setting, and the effectiveness of the

lifting transform in representing irregularly sampled infor-

mation, jointly motivate our proposed approach to tackle

this analysis problem: firstly we propose a novel lifting

transform able to cope with irregularly sampled complex-

valued processes, and secondly we construct a long memory

estimator using the corresponding complex-valued lifting

coefficients. Notably, the proposed method is suitable for

regularly or irregularly sampled processes, both real- and

complex-valued; in particular, Hurst estimation is addressed

for improper complex-valued processes that have real-valued

covariances, as introduced in Sykulski and Percival (2016),

as well as for proper complex-valued series, as described in

Coeurjolly and Porcu (2017).

3 A new lifting algorithm for
complex-valued signals and its properties

In this section, we introduce our proposed lifting algorithm

for a complex-valued function and establish its decorrelation

properties.

3.1 ProposedC2-LOCAAT algorithm for
complex-valued signals

Suppose now a complex-valued function f (·p) is observed

at a set of n, possibly irregular, locations or time points, x =
(x1, . . . , xn) and is represented by {(xi , f (xi ) = fi )}n

i=1.

Our proposed algorithm builds a redundant transform that

starts with the complex-valued signal f = ( f1, . . . , fn) ∈
Cn and transforms it into a set of, say, R coarse (complex-

valued) scaling coefficients and 2×(n−R) (complex-valued)

detail coefficients, where R is the desired primary resolution

scale. As is usual in lifting, our algorithm reiterates the three

steps—split, predict and update—in a modified version, as

described below.

At the first stage (n) of the algorithm, denote the smooth

coefficients as cn,k = fk , the set of indices of smooth coef-

ficients by Sn = {1, . . . , n} and the set of indices of detail

coefficients by Dn = ∅. The sampling structure is accounted

for using the distance between neighbouring observations,

and at stage n we define the span of xk as sn,k = xk+1−xk−1

2
.

At the next stage (n−1), the proposed algorithm proceeds

as follows:

Split Choose a point to be removed and denote its index by

jn . Typically, points from the densest sampled regions are
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removed first, but other predefined removal choices are also

possible, as we shall discuss below. We shall often refer to the

removal order as a trajectory, following Knight and Nason

(2009).

Predict The set of neighbours (Jn) of the point jn is iden-

tified. Note that the set of neighbours is indexed by n

as the choice will depend on the removal stage (via the

points remaining at that stage). The predict step estimates

cn, jn = f jn by using regression over the neighbouring loca-

tions Jn and two prediction schemes, a strategy first suggested

by Hamilton et al. (2017) for real-valued signals. Each pre-

diction scheme is defined by its respective filter, L and M,

orthogonal on each other. The filter L corresponds to the

(possibly) linear regression choice as is usual in LOCAAT.

The filter M is linked to L through a specific set of properties,

discussed in detail in Hamilton et al. (2017) and described in

step 2 of Algorithm 1. Both filters are constructed such that

the corresponding wavelet coefficients of any constant poly-

nomial are 0 (known in the wavelet literature, as possessing

(at least) one vanishing moment).

The prediction residuals following the use of each filter

are given by

λ jn = ln
jn

cn, jn −
∑

i∈Jn

ln
i cn,i , (3)

μ jn = mn
jn

cn, jn −
∑

i∈Jn

mn
i cn,i , (4)

where {ln
i }i∈Jn∪{ jn} and {mn

i }i∈Jn∪{ jn} are the prediction

weights associated with filters L and M; as is typical in

LOCAAT, we take ln
jn

= 1.

Our proposal is to obtain two complex-valued detail

(wavelet) coefficients by combining the two prediction resid-

uals as follows:

d
(1)
jn

= λ jn + i μ jn , (5)

d
(2)
jn

= λ jn − i μ jn . (6)

Note that if the original signal is real-valued, then d(2) = d
(1)

and all we need is d(1). However, when the process is

complex-valued as is the case here, d(2) �= d
(1)

and we need

both d(1) and d(2). This is in contrast to Hamilton et al. (2017),

where the information from the two prediction schemes is

corroborated into just one complex-valued wavelet coeffi-

cient, and although its naive implementation on the real and

imaginary process strands would yield two sets of complex-

valued wavelet coefficients, it would not be obvious how to

best combine their information.

Update In the update step, both the (complex-valued)

smooth coefficients {cn,i } and (real-valued) spans of the

neighbours {sn,i } are updated according to filter L:

cn−1,i = cn,i + bn
i λ jn ,

sn−1,i = sn,i + ln
i sn, jn ∀i ∈ Jn, (7)

where bn
i = (sn, jn sn−1,i )/(

∑

i∈Jn
s2

n−1,i ) are the update

weights, again computed so that the mean of the signal is pre-

served (Jansen et al. 2009). Updating the neighbours’ spans

accounts for the modification to the sampling grid induced

by removing one of the observations, and using just one filter

for update [akin to the approach of Hamilton et al. (2017)]

ensures the use of a common scale across both d(1) and d(2).

The observation jn is then removed from the set of smooth

coefficients; hence, after the first algorithm iteration, the

index set of smooth coefficients is Sn−1 = {1, ..., n}\{ jn}
and the index set of detail coefficients is Dn−1 = { jn}. The

algorithm is then reiterated until the desired primary reso-

lution level R has been achieved. In practice, the choice of

the primary level R in LOCAAT lifting schemes is not cru-

cial provided it is sufficiently low (Jansen et al. 2009), with

R = 2 recommended by Nunes et al. (2006).

The three steps are then repeated on the updated signal,

and each repetition yields two new wavelet coefficients. After

points jn, jn−1, . . . , jR+1 have been removed, the function

can be represented as a set of 2 × (n − R) detail coefficients,

{d(1)
jk

}k∈Dn−R
and {d(2)

jk
}k∈Dn−R

, and R smooth coefficients,

{cr−1,i }i∈Sn−R
, thus resulting in a redundant transform. An

algorithmic description of C2-LOCAAT appears in Algo-

rithm 1.

The proposed algorithm can then be easily inverted by

recursively ‘undoing’ the update, predict and split steps

described above for the first filter (L). More specifically, the

inverse transform can be performed by the steps

Undo Update cn,i = cn−1,i − bn
i λ jn , ∀i ∈ Jn

Undo Predict

cn, jn =
λ jn −

∑

i∈Jn
ln
i cn,i

ln
jn

or (8)

cn, jn =
μ jn −

∑

i∈Jn
mn

i cn,i

mn
jn

. (9)

Undoing either predict (8) or (9) step is sufficient for inver-

sion.

A few remarks on our proposed C2-LOCAAT lifting algo-

rithm are now in order.

Transform matrix representation As with any linear trans-

form, the algorithm that determines one set of detail coef-

ficients, say d(1), can also be represented using a matrix

transform, i.e. d(1) = W (c) f , where W (c) is a n × n
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Proposed C2-LOCAAT using two symmetrical

neighbours:

Choose a removal order (trajectory), either dictated by the sampling

sequence or following a random permutation.

1. Split: Choose the first/next point to be removed from the set of

smooth coefficients Sn = {1, ..., n} and denote its index by jn .

2. Predict:

(a) Determine the set of neighbours Jn (one each side of jn) and

use linear regression over the neighbourhood in order obtain a

prediction at jn .

Calculate the prediction residual,λ jn , as the difference between

the observed and predicted values at jn (see Eq. (3)). This

coupled with the requirement of achieving at least one vanish-

ing moment amounts to obtaining a filter L = (l1, 1, l3) with

l1 + l3 = 1.

(b) Construct a new filter M = (Am, (1+ A)m, m) with A = l1−2
l1+1

and m = l1+1√
3

. By construction, M is orthogonal on L, has at

least one vanishing moment and ‖L‖ = ‖M‖. Using M, obtain

a new prediction residual, μ jn (see Eq. (4)).

(c) The complex-valued wavelet (detail) coefficients at jn are

d
(1)
jn

= λ jn + i μ jn and d
(2)
jn

= λ jn − i μ jn .

3. Update: the smooth coefficients and their associated scales using

the filter L (see Eq. (7)).

Update the index sets of smooth and detail coefficients as Sn−1 =
Sn\{ jn} and Dn−1 = { jn}, respectively.

4. Iterate steps 1–3 for jn−1, . . . , jR+1 with a typical primary reso-

lution level R = 2, hence obtain a set of complex-valued wavelet

coefficients indexed by DR = { jn, ..., jR+1}.

Alg. 1 The complex-valued lifting scheme (C2-LOCAAT) on a

complex-valued signal

matrix with complex-valued entries. When expressed as a

matrix transform, our proposed C2-LOCAAT algorithm for

a complex-valued process ( f ) can be expressed as

d =
(

W (c)

W
(c)

)

f (10)

=
(

d(1)

d(2)

)

, (11)

with d(1) = W (c) f and d(2) = W
(c)

f .

Wavelet lifting scales and artificial levels The (log2) span

associated with an observation at the last stage before its

removal, say log2(sk, jk ) for the detail coefficient d jk obtained

at stage k, is used as a (continuous) measure of scale—this

indirectly stems from the fact the wavelets are not dyad-

ically scaled versions of a single mother wavelet. As the

notion of scale of lifting wavelets is continuous, Jansen

et al. (2009) group wavelet functions of similar (continu-

ous) scales into ‘artificial’ levels, to mimic the dyadic levels

of classical wavelets [see Jansen et al. (2001), Jansen et al.

(2009) for more details]. We also adopt this strategy to group

the complex-valued wavelet coefficients produced using our

C2-LOCAAT algorithm. An alternative is to group the coef-

ficients via their interval lengths into ranges (2 j−1α0, 2 jα0],
where j ≥ 1 and α0 is the minimum scale. This construc-

tion more closely resembles classical wavelet dyadic scales,

but both produce similar results. Note that by construction,

the C2-LOCAAT transform crucially uses a common scale

for both real and imaginary parts, and it is this feature that

ensures that information is obtained on the same scale at

every step.

Choice of removal order The lifting algorithms in Sects. 2.3

and 3.1 are inherently dependent on the order in which points

are removed as the algorithm progresses. Jansen et al. (2009)

remove points in order from the finest continuous scale to

the coarsest, to mimic the DWT, which produces coefficients

at the finest scale first, then at progressively coarser scales.

However, in our proposed C2-LOCAAT scheme, we can

choose to remove points according to a predefined path (or

trajectory) T = (xo1 , . . . , xon ), where (o1, o2, . . . , on) is a

permutation of the set {1, . . . , n}. Knight and Nason (2009)

introduced the nondecimated lifting transform, which pro-

poses examining data using P bootstrapped paths from the

space of n! possible trajectories. Aggregating the informa-

tion obtained via this approach typically improves estimator

variance and accuracy, not only in the long memory estima-

tion context (Knight et al. 2017), but also for, for example

nonparametric regression (Knight and Nason 2009). This

strategy will be embedded in our proposed methodology in

Sect. 4.

3.2 Refinement equations for the scaling and
wavelet functions underC2-LOCAAT

Although not explicitly apparent, the wavelet lifting con-

struction induces a biorthogonal (second generation) wavelet

basis construction; see, for example Sweldens (1995). In

the real-valued lifting one coefficient at a time paradigm,

as the algorithm progresses, scaling and wavelet functions

decomposing the frequency content of the signal are built

recursively according to the predict and update Eqs. (1)

and (2) (Jansen et al. 2009). Also, the (dual) scaling func-

tions are defined recursively as linear combinations of (dual)

scaling functions at the previous stage.

Let us now investigate the basis decomposition afforded

by our proposed C2-LOCAAT transform, as a result of

performing the split, predict and update steps. As our con-

struction involves two prediction filters, we decompose f on

two biorthogonal bases. Our construction is reminiscent of

the dual-tree complex wavelet transform (CWT) (Kingsbury

2001; Selesnick et al. 2005) which employs two separate clas-

sical wavelet transforms, but fundamentally differs through

the construction of linked orthogonal filters.
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In our proposed construction, let us denote the two

scaling function and wavelet biorthogonal bases

by
{

ϕ(1), ϕ̃(1), ψ (1), ψ̃
(1)

}

and
{

ϕ(2), ϕ̃(2), ψ (2), ψ̃
(2)

}

,

respectively. We now explore their relationships and recur-

sive construction.

At stage r , the complex-valued signal f can be decom-

posed on each basis as

f (x) =
∑

ℓ∈Dr

d
(i)
ℓ ψ

(i)
ℓ (x)+

∑

k∈Sr

c
(i)
r ,kϕ

(i)
r ,k(x), i = 1, 2, (12)

with d
(i)
ℓ =< f , ψ̃

(i)
ℓ > and c

(i)
r ,k =< f , ϕ̃

(i)
r ,k > for both

bases i = 1, 2, where the inner product is as usual defined

on L2(C). As the update step is the same for both bases, it fol-

lows that c
(1)
r ,k = c

(2)
r ,k . Hence, denote cr ,k =< f , ϕ̃

(1)
r ,k >=<

f , ϕ̃
(2)
r ,k >, for all r , k and thus the dual scaling functions

coincide under both bases. In what follows, we shall denote

these by ϕ̃r ,k .

Proposition 1 Suppose we are at stage r − 1 of the C2-

LOCAAT algorithm. The recursive construction of the primal

scaling and wavelet functions corresponding to the coeffi-

cients d(1), in terms of the functions at the previous stage r ,

is given by

ϕ
(1)
r−1, j (x) = ϕ

(1)
r , j (x) + ãr

jϕ
(1)
r , jr

(x), if j ∈ Jr , (13)

ϕ
(1)
r−1, j (x) = ϕ

(1)
r , j (x), if j /∈ Jr , (14)

ψ
(1)
jr

(x) =
ar

jr

|ar
jr
|2 ϕ

(1)
r , jr

(x) −
∑

j∈Jr

br
jϕ

(1)
r−1, j (x), (15)

where ar
j = ℓr

j + i mr
j and ãr

j = ar
jr

ar
j

|ar
jr

|2 .

Similarly, the recursive construction for the primal scaling

and wavelet functions corresponding to the coefficients d(2),

in terms of the functions at the previous stage r , is given by

ϕ
(2)
r−1, j (x) = ϕ

(2)
r , j (x) + ã

r

jϕ
(2)
r , jr

(x), if j ∈ Jr , (16)

ϕ
(2)
r−1, j (x) = ϕ

(2)
r , j (x), if j /∈ Jr , (17)

ψ
(2)
jr

(x) =
ar

jr

|ar
jr
|2 ϕ

(2)
r , jr

(x) −
∑

j∈Jr

br
jϕ

(2)
r−1, j (x). (18)

For the corresponding dual bases, the recursive construc-

tions are given by

ϕ̃r−1, j (x) = ϕ̃r , j (x) + br
j ψ̃

L
jr
(x), ∀ j ∈ Jr , (19)

ϕ̃r−1, j (x) = ϕ̃r , j (x), ∀ j /∈ Jr , (20)

ψ̃
(1)
jr

(x) = ar
jr
ϕ̃r , jr (x) −

∑

j∈Jr

ar
j ϕ̃r , j (x), (21)

ψ̃
(2)
jr

(x) = ar
jr
ϕ̃r , jr (x) −

∑

j∈Jr

ar
j ϕ̃r , j (x), (22)

where ψ̃ L denotes the dual wavelet function corresponding

to the L-filter only.

The proof can be found in ‘Appendix A, Section A.1’.

Summarizing, the two bases can be represented

as {ϕ(1), ϕ̃, ψ (1), ψ̃
(1)} and {ϕ(1), ϕ̃, ψ

(1)
, ψ̃

(2)} and their

recursive construction established above will be used in

obtaining the formal properties required to justify our pro-

posed long memory estimation approach.

3.3 Decorrelation properties of theC2-LOCAAT
algorithm

Wavelet transforms are known to possess good decorrela-

tion properties; see in the context of long memory processes,

for example, Abry et al. (2000), Jensen (1999), Craigmile

et al. (2001) for classical wavelets, and Knight et al. (2017)

for lifting wavelets constructed by means of LOCAAT. The

decorrelation property amounts to the consequent removal

of the long memory in the wavelet domain, and thus esti-

mation of the Hurst exponent can be carried out in this

simplified context. Therefore, we next provide mathematical

evidence for the decorrelation properties of the C2-LOCAAT

algorithm and these will subsequently benefit our proposed

long memory estimation procedure (see Sect. 4). The state-

ment of Proposition 2 (next) aims to establish decorrelation

results similar to earlier ones concerning regular wavelets

(see, e.g. Abry et al (2000, p. 51) for fractional Gaussian

noise, Jensen (1999, Theorem 2) for fractionally integrated

processes or Theorem 5.1 of Craigmile and Percival (2005)

for fractionally differenced processes) and lifting wavelets

[see Proposition 1 in Knight et al. (2017)]. In what follows,

we establish the decorrelation properties for the proposed

complex-valued lifting transform C2-LOCAAT in a more

general data setting than previously considered for lift-

ing wavelets, involving complex-valued stationary processes

with real-valued autocovariances that may be proper or

improper in nature.

Proposition 2 Let X = {X ti }N−1
i=0 denote a (zero-mean)

stationary long memory complex-valued time series with

Lipschitz continuous spectral density fX . Assume the pro-

cess is observed at irregularly spaced times {ti }N−1
i=0 , and

let {{cR,i }i∈{0,...,N−1}\{ jN−1,..., jR−1}, {d jr
}N−1
r=R−1} be the C2-

LOCAAT transform of X, where d jr
=

(

d
(1)
jr

d
(2)
jr

)T

. Then,

both sets of detail coefficients {d(1)
jr

}r and {d(2)
jr

}r have auto-

correlation and pseudo-autocorrelation whose magnitudes

decay at a faster rate than for the original process.

The proof can be found in ‘Appendix A, Section A.2’ and uses

similar arguments to the proof of Proposition 1 in Knight

et al. (2017), adapted for the C2-LOCAAT algorithm and

complex-valued setting we address here. Just as for LOCAAT
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(Knight et al. 2017), Proposition 2 above assumes no spe-

cific lifting wavelet and we conjecture that if smoother lifting

wavelets were employed, it might be possible to obtain even

better rates of decay.

4 Longmemory parameter estimation using
complex wavelet lifting (CLoMPE)

As the newly constructed wavelet domain through C2-

LOCAAT displays small magnitude autocorrelations, we

now focus on the wavelet coefficient variance and show that

the log2-variance of each of the complex-valued lifting coef-

ficients d(1) and d(2) is linearly related to their corresponding

artificial scale level, a result paralleling classical and real-

valued lifting wavelet results. This result suggests a Hurst

parameter estimation method for potentially irregularly sam-

pled long memory processes that take values in the complex

(C) domain.

Proposition 3 next establishes a result similar to that in

Proposition 2 of Knight et al. (2017) by taking into account

the specific C2-LOCAAT construction and thus extends the

scope of Hurst estimation methodology to irregularly sam-

pled complex-valued processes.

Proposition 3 Let X = {X ti }N−1
i=0 denote a (zero-mean)

complex-valued long memory stationary time series with

finite variance and spectral density fX (ω) ∼ c f |ω|−α as

ω → 0, for some α ∈ (0, 1). Assume the series is observed at

irregularly spaced times {ti }N−1
i=0 , and transform the observed

data X into a collection of lifting coefficients, {d(1)
jr

}r and

{d(2)
jr

}r , via application of C2-LOCAAT from Sect. 3.1.

Let r denote the stage of C2-LOCAAT at which we obtain

the wavelet coefficients d
(ℓ)
jr

(with ℓ = 1, 2), and let its cor-

responding artificial level be j⋆. Then, denoting by | · p| the

C-modulus, we have for some constant K

(σ
(ℓ)
j⋆ )2 = E

(

|d(ℓ)
jr

|2
)

∼ 2 j⋆(α−1) × K . (23)

The proof can be found in ‘Appendix A, Section A.3’.

This result suggests a long memory parameter estimation

method for an irregularly sampled, complex-valued time

series, described in Algorithm 2, which we shall refer to as

CLoMPE (Complex-valued Long Memory Parameter Esti-

mation Algorithm). Section 5.1, next, will show that our

proposed CLoMPE methodology below not only adds a new

much needed tool in the estimation of long memory for

complex-valued processes, but also improves Hurst exponent

estimation for real-valued processes, sampled both regularly

and irregularly.

Complex-valued Long Memory Parameter

Estimation Algorithm (CLoMPE):

Assume that {X ti }N−1
i=0 is as in Proposition 3. We estimate α as follows.

1. Apply C2-LOCAAT to the complex-valued observed process

{X ti }N−1
i=0 using a particular lifting trajectory to obtain the coef-

ficients {d jr
=

(

d
(1)
jr

d
(2)
jr

)T

}r ; see Eq. (10).

2. Normalize both sets of (complex-valued) detail coefficients by their

corresponding C-modulus: divide each squared (C) modulus by

the corresponding diagonal entry of W (c)W
(c),T

, where W (c) is the

complex-valued lifting transform matrix corresponding to d(1).

3. Group the coefficients into a set of artificial scales as described in

Sect. 2.3. Estimate the wavelet energy within the artificial level j⋆

by

(

σ̂
(ℓ)
j⋆

)2
:= (n j⋆ − 1)−1

n j⋆
∑

r=1

|d(ℓ)
jr

|2, for each ℓ = 1, 2, (24)

where n j⋆ is the number of observations in artificial level j⋆. Note

that the C2-LOCAAT construction, by its use of an unique update

step, ensures that the number of observations in each j⋆ artificial

level coincides for both ℓ = 1 and ℓ = 2.

4. Fit a weighted linear regression to all points log2

(

σ̂
(ℓ)
j⋆

)2
with

ℓ = 1, 2 versus j⋆; use its slope to estimate α as suggested by

the results in Proposition 3. Note that Eq. (23) allows us to pull the

information across both d(1) and d(2).

5. Iterate steps A-1 to A-4 for P bootstrapped trajectories, obtaining

an estimate α̂p for each trajectory p ∈ 1, P . The final estimator is

α̂ = P−1
∑P

p=1 α̂p , from which an appropriate estimate for H can

be obtained.

Alg. 2 The long memory parameter estimation procedure (CLoMPE)

for a complex-valued process {X ti }N−1
i=0 , sampled at potentially irregu-

larly spaced times

5 Simulated performance of CLoMPE and
real data analysis

5.1 Simulated performance ofCLoMPE

In what follows, we investigate the performance of our Hurst

parameter estimation technique for complex-valued series.

We simulated realizations of two types of long memory

processes, namely circularly symmetric complex fractional

Brownian motion, as introduced in Coeurjolly and Porcu

(2018), and improper complex fractional Gaussian noise

(with real-valued covariances) as described in Sykulski and

Percival (2016),1 investigating series of lengths of 256, 512

and 1024. These lengths were chosen to reflect realistic data

collection scenarios—long enough for the Hurst parameter

(a low-frequency asymptotic quantity) to be reasonably esti-

1 We would like to thank Adam Sykulski for supplying the Matlab

code to simulate the improper complex fractional Gaussian noise pro-

cesses.
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mated, whilst reflecting lengths of datasets encountered in

practice.

To investigate the effect of sampling irregularity on the

performance of our method, we simulated datasets with dif-

ferent levels of random missingness (5–20%), which are

representative of degrees of missingness reported in many

application areas, for example in paleoclimatology and envi-

ronmental series (Broersen 2007; Junger and Ponce de Leon

2015).

We compared results across the range of Hurst parameters

H = 0.6, . . . , 0.9. Each set of results is taken over K = 100

realizations and P = 50 lifting trajectories. Our CLoMPE

technique was implemented using modifications to the code

from the liftLRD package (Knight and Nunes 2016) and CNL-

Treg package (Nunes and Knight 2017) for the R statistical

programming language (R Core Team 2013), both available

on CRAN. The measure we use to assess the performance of

the methods is the mean squared error (MSE) defined by

MSE = K −1
K

∑

k=1

(H − Ĥ k)2. (25)

In the case of regularly spaced circularly symmetric frac-

tional Brownian motion (i.e. 0% missingness), we compare

our CLoMPE estimation technique with the recent estima-

tion method in Coeurjolly and Porcu (2017) (denoted ‘CP’).2

Table 1 reports the mean squared error for our CLoMPE

estimator on the complex-valued fractional Brownian motion

series for different degrees of missingness (0% up to 20%).

In the case of regularly spaced series, our estimation method

works well when compared to the ‘CP’ method. This is pleas-

ing since the “CP” method is designed for regularly spaced

series, whereas CLoMPE is specifically designed for irreg-

ularly spaced series. The tables also show that the CLoMPE

technique is robust to the presence of missingness, attain-

ing good performance even for high degrees of missingness

(20%).

For the complex-valued fractional Gaussian noise, Table 2

demonstrates that our CLoMPE estimation technique per-

forms well for regular and irregular settings, with only a slight

degradation in performance for increasing missingness.

We also studied the empirical bias of our estimator for

both types of long memory process. For reasons of brevity,

we do not report these results here, but these can be found

in Appendix B in the supplementary material. As for the

mean squared error results above, there is a small drop in

performance with increasing missingness, and our estimator

2 The authors would like to thank Jean-François Coeurjolly for provid-

ing the R code for simulating the circular fractional Brownian motion

series, as well as for the implementation of the estimation technique of

Coeurjolly and Porcu (2017).

performs only slightly worse in terms of bias when compared

to the ‘CP’ method.

Real-valued processes To assess whether our complex-

valued approach achieves performance gains for real-valued

processes, we repeated the simulation study from Knight

et al. (2017) for a number of long memory processes. In

particular, we studied the performance of our estimator for

real-valued fractional Brownian motion, fractional Gaussian

noise and fractionally integrated series, for a range of Hurst

parameters and levels of missingness. The processes were

simulated via the fArma add-on package (Wuertz et al. 2013).

We compare our method with the real-valued lifting tech-

nique of Knight et al. (2017), shown to perform well in a

number of settings. Again, for brevity, we do not report these

bias results here, but they can be found in Appendix B in the

supplementary material. The results show that our method

is competitive with the real-valued estimation method in

Knight et al. (2017), achieving better results (in terms of

MSE and bias) in the majority of cases for fractional Gaus-

sian noise and fractionally integrated series. For fractional

Brownian motion, we observe that our method achieves gains

in mean square error, albeit at a cost of a decrease in bias

performance. These results agree with other studies using

complex-valued wavelet methodology, which is shown to

outperform its real-valued counterpart in a variety of appli-

cations, from denoising (Barber and Nason 2004 to Hurst

estimation in the (real-valued) image context (Nelson and

Kingsbury 2010; Jeon et al. 2014; Nafornita et al. 2014).

This is due to the use of two rather than just one filter, thus

eliciting more information from the signal under analysis.

5.2 Analysis of complex-valued wind series with
CLoMPE

In this section, we provide a more detailed long memory anal-

ysis of the complex-valued wind series described in Sect. 1.1.

More specifically, we applied our CLoMPE Hurst estimation

method to the (detrended) irregularly sampled wind series to

assess its persistence properties. The estimated Hurst param-

eter was ĤC = 0.86 for the Wind A series and ĤC = 0.8

for the Wind B series, based on P = 50 lifting trajectories.

Both of these estimates indicate moderate long memory.

To highlight potential differences with other approaches,

we also performed the LoMPE technique of Knight et al.

(2017) to each of the real and imaginary components of the

two series. In addition, we also estimated the Hurst exponent

using the Knight et al. (2017) method for the two magnitude

series, since such series (i.e. data without directional infor-

mation) are most commonly analysed in the literature. The

Hurst exponent estimates are denoted by ĤR and ĤI for

the real and imaginary component series, and ĤMod for the

magnitude series. The estimates are summarized in Table 3.
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Table 1 Mean squared error (×103) for fractional Brownian motion

series featuring different degrees of missing observations for a range of

Hurst parameters for the CLoMPE estimation procedure. Boxed num-

bers indicate best result for the regularly spaced setting. Numbers in

brackets are the estimation errors’ standard deviation

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

CP CLoMPE CP CLoMPE CP CLoMPE

0% 0% 5% 10% 20% 0% 0% 5% 10% 20% 0% 0% 5% 10% 20%

0.6 2 (3) 1 (2) 1 (2) 1 (1) 2 (3) 1 (2) 1 (1) 0 (0) 0 (1) 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0)

0.7 2 (3) 1 (2) 1 (1) 1 (2) 2 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 (1) 2 (1) 1 (1) 1 (1) 0 (0)

0.8 3 (3) 2 (2) 2 (2) 1 (2) 2 (2) 1 (2) 2 (2) 1 (2) 1 (2) 1 (2) 1 (1) 3 (2) 2 (2) 2 (1) 1 (1)

0.9 2 (3) 3 (4) 2 (3) 2 (3) 2 (2) 1 (2) 2 (2) 2 (3) 2 (2) 2 (2) 2 (2) 2 (2) 3 (2) 3 (2) 2 (2)

Table 2 Mean squared error

(×103) for fractional Gaussian

noise featuring different degrees

of missing observations for a

range of Hurst parameters for

the CLoMPE estimation

procedure. Numbers in brackets

are the estimation errors’

standard deviation

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

0.6 1 (2) 1 (2) 1 (2) 2 (2) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

0.7 1 (2) 2 (2) 2 (2) 2 (3) 1 (1) 2 (2) 2 (2) 3 (2) 2 (1) 2 (1) 2 (1) 3 (2)

0.8 2 (2) 2 (3) 2 (3) 3 (5) 2 (2) 3 (3) 3 (3) 4 (4) 2 (2) 3 (2) 3 (2) 5 (3)

0.9 3 (4) 3 (3) 3 (3) 3 (5) 2 (2) 2 (3) 3 (3) 3 (3) 2 (2) 3 (2) 3 (2) 4 (3)

Table 3 Hurst parameter estimates for the Wind A and Wind B data

from complex-valued series using CLoMPE and from real-valued com-

ponent and magnitude series using LoMPE

Dataset R I Mod C

Wind A 0.90 0.82 0.80 0.86

Wind B 0.85 0.75 0.80 0.80

For the Wind A dataset, our CLoMPE technique esti-

mates the persistence as between those of the real and

imaginary components, and higher than that of the magnitude

series. In contrast, for the Wind B dataset, the estimate from

our complex-valued approach coincides with the result for

the series derived from the C-modulus. This analysis high-

lights that ignoring the dependence structure between the real

and imaginary components of the series may result in mis-

estimation. Hence, we recommend an approach that uses the

complex-valued structure of the data, thus accounting for its

intrinsic rotary structure and dependence, not visible by only

using the traditional magnitude series or individual real and

imaginary strands.

It could also be argued that these differences in esti-

mates are unsurprising, since the dependence structure for

the magnitude series, shown in Fig. 4, is visibly different

to that of the real and imaginary component series shown

in Fig. 2. We argue that our estimation of the long mem-

ory parameter for this series is more reliable than that in the

currently existing literature, as our proposed algorithm nat-

urally encompasses both the complex-valued and improper

features of wind series. A complex-valued analysis using our

approach could hence provide more accurate long memory

information, reducing miscalibration of predictive climate

models. We further suggest that this precision would provide

more certainty when assessing renewable energy resource

potential, as discussed in, for example, Bakker and van den

Hurk (2012).

6 Discussion

Hurst exponent estimation is a recurrent topic in many

scientific applications, with significant implications for mod-

elling and data analysis. One important aspect of real-world

datasets is that their collection and monitoring are often not

straightforward, leading to missingness, or to the use of prox-

ies with naturally irregular sampling structures. In parallel,

in many applications of interest there is a natural complex-

valued representation of data. To this end, this article has

proposed the first Hurst estimation technique for complex-

valued processes with sampling missingness or irregularity,

and in doing so it has also constructed a novel lifting algo-

rithm able to work on complex-valued data sampled with

irregularity. Until the work in this article, Hurst estimation
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Fig. 4 a Autocorrelation for the magnitude wind series for theWind A

series from Fig. 1 (treated as regularly spaced); b autocorrelation for the

magnitude Wind B dataset from Fig. 1 (treated as regularly spaced).

The dependence structure is markedly different to that shown for the

real and imaginary series components shown in Fig. 2

methods have not been able to exploit the wealth of signal

information in such data, whilst also coping with irregular

sampling regimes. Our CLoMPE wavelet lifting methodol-

ogy was shown to give accurate Hurst estimation for a variety

of complex-valued fractional processes and is suitable for

both proper and improper complex-valued processes. Simu-

lations demonstrate that the technique is robust to estimation

with significant degrees of missingness, as well as in the

non-missing (regular) setting.

We have demonstrated the use of our CLoMPE tech-

nique in an application arising in environmental science.

Through our analysis of wind speed data, we have shown

that embedding directional wind information in the analysis

can lead to significantly different Hurst exponent estimates

when compared to only considering real-valued information,

such as magnitude series. This highlights that not exploiting a

complex-valued data representation in this setting can poten-

tially result in misleading conclusions being drawn about

wind persistence. This in turn has a subsequent impact on

parameters in climate models and inefficiencies in resource

management decisions.

Whilst the development of our proposed complex-valued

Hurst estimator was motivated by an application in climatol-

ogy, we believe that the work in this article has sufficient

generality to have appeal in other settings. We thus con-

clude this article with outlining some example applications

in which our methodology is potentially beneficial.

Data from neuroimaging studies Functional magnetic reso-

nance imaging (fMRI) data continue to enjoy popularity in

the neuroscience community due to their non-invasive acqui-

sition and data richness; see, for example, Aston and Kirch

(2012) for an accessible introduction to the area from the sta-

tistical perspective. In particular, fMRI studies often measure

information on blood flow in the brain; these voxel-level data

are used to investigate neuronal activity of participants dur-

ing task-based experiments, and many authors have asserted

that such time courses possess fractional noise structure, see,

for example, Bullmore et al. (2003). Evaluation of the Hurst

exponent in this context has been shown to be important in

characterizing brain activity under a range of conditions, indi-

cating different levels of cognitive effort (Park et al. 2010;

Ciuciu et al. 2012; Churchill et al. 2016). Despite data col-

lection being performed in a controlled set-up, recent work

has highlighted the need for tailored statistical methodology

to cope with both unbalanced designs, as well as miss-

ingness, which can feature in fMRI data for a number of

reasons (Lindquist 2008; Ferdowsi and Abolghasemi 2018).

In actuality, fMRI scanners record both phase and magni-

tude information, though most studies only use the magnitude

image for analysis. As a result, there has been a recent body

of work dedicated to complex-valued analysis of fMRI data,

most notably by Rowe and collaborators [see, e.g. Rowe

(2005) and Rowe (2009) and Adrian et al. (2018)]. Such an

approach has shown improvements over real-valued methods

for a range of analysis tasks; see also the work by Adali and

collaborators (Calhoun et al. 2002; Li et al. 2011; Rodriguez

et al. 2012). Thus, our methodology has the potential of tak-

ing advantage of the full complex-valued image information

whilst also coping with the inherent non-uniform sampling.
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Ocean surface measurement devices There is a long-standing

history of studying ocean circulation using GPS-tracked

ocean buoy drifters, see e.g. Osborne et al. (1989). Since these

trajectories are measured in the longitude-latitude plane, they

are often converted to complex-valued vector series; see, for

example, Sykulski et al. (2017). It has long been observed

that due to the buffeting motion of ocean currents, posi-

tional drifter trajectories often exhibit fBM-like behaviour,

whilst their velocity over time resembles fGn characteris-

tics (Sanderson and Booth 1991; Summers 2002; Qu and

Addison 2010; Lilly et al. 2017). In this context, accurate

Hurst exponent estimation is useful in indicating the inten-

sity of ocean turbulence, giving evidence towards particular

theorized dynamical regimes (Osborne et al. 1989). These

in turn can provide insight into initial conditions and origin

of ocean circulation. Moreover, the trajectories often display

rotary characteristics (Elipot and Lumpkin 2008; Elipot et al.

2016). Due to the interrupted nature of satellite coverage and

the possibility of measurements from multiple satellite orbits,

the temporal sampling of the trajectories are typically highly

non-uniform. In addition, due to the irregular sampling struc-

ture, the data are often interpolated prior to analysis (Elipot

et al. 2016). One aspect of exploration in this setting could be

to contrast Hurst estimation using our proposed methodol-

ogy with/without data interpolation to investigate its effect,

since previous work substantiates that such processing can

produce bias (in the context of Hurst exponent estimation)

for real-valued series (Knight et al. 2017). It would also be

interesting to investigate modifications to our technique to

parameter estimation for Matérn processes discussed in Lilly

et al. (2017).
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A Proofs and theoretical results

This appendix gives the theoretical justification of the results

from Sects. 3 and 4, following the notation outlined in the

text.

A.1 Proof of Proposition 1

To obtain the recursive construction for each basis, we start

with the basis indexed by i = 1. At stage n, we have f (x) =

∑

k∈Sn
cn,kϕ

(1)
n,k(x) with ϕ

(1)
n,k(x) = χIn,k

(x) as proposed in

the LOCAAT construction (Jansen et al. 2009).

Let us now suppose f (x) := ϕ
(1)
n−1, j (x), thus ϕ

(1)
n−1, j (x) =

d
(1)
jn

ψ
(1)
jn

(x) +
∑

k∈Sn−1
cn−1,kϕ

(1)
n−1,k(x). Hence, d

(1)
jn

= 0,

cn−1,k = 0,∀k �= j and cn−1, j = 1. From the update

relationship cn−1,k = cn,k + bn
k λ jn from (7), we have

cn−1,k = cn,k,∀k ∈ Jn (as λ jn = 0 from d
(1)
jn

= 0) and

also cn−1,k = cn,k,∀k /∈ Jn .

From Eq. (5), we have

d
(1)
jn

= λ jn + i μ jn = cn, jn

(

ℓn
jn

+ i mn
jn

)

+
∑

k∈Jn

cn,k

(

ℓn
k + i mn

k

)

. (26)

By denoting an
k = ℓn

k + i mn
k , we obtain d

(1)
jn

= cn, jn an
jn

−
∑

k∈Jn
an

k cn,k . Using also the fact that d
(1)
jn

= 0, we have

cn, jn = an
jn

|an
jn

|2
∑

k∈Jn
an

k cn,k . If j ∈ Jn then cn, j = 1 and all

others are zero, so cn, jn = an
jn

an
j

|an
jn

|2 := ãn
j . Thus

ϕ
(1)
n−1, j (x) = ϕ

(1)
n, j (x) + ãn

j ϕ
(1)
n, jn

(x), if j ∈ Jn, (27)

ϕ
(1)
n−1, j (x) = ϕ

(1)
n, j (x), if j /∈ Jn . (28)

For the primal wavelet function construction, we can sim-

ilarly take f (x) := ψ
(1)
jn

(x) and obtain the corresponding

wavelet decomposition with coefficients d
(1)
jn

= 1 (thus

λ jn = 1 and μ jn = 0) and cn−1,k = 0,∀k �= jn . From

the update equations, we have cn, j = −bn
j ,∀ j ∈ Jn and

cn, j = 0,∀ j /∈ Jn .

Using d
(1)
jn

= cn, jn an
jn

−
∑

j∈Jn
an

j cn, j (as above) and

d
(1)
jn

= 1, we have cn, jn an
jn

= 1 −
∑

j∈Jn
an

j bn
j and cn, jn =

an
jn

|an
jn

|2
(

1 −
∑

j∈Jn
an

j bn
j

)

. Since f (x) := ψ
(1)
jn

(x), we then

have

ψ
(1)
jn

(x) =
an

jn

|an
jn
|2

⎛

⎝1 −
∑

j∈Jn

an
j bn

j

⎞

⎠ ϕ
(1)
n, jn

(x) −
∑

j∈Jn

bn
j ϕ

(1)
n, j (x)

=
an

jn

|an
jn
|2 ϕ

(1)
n, jn

(x) −
∑

j∈Jn

bn
j

(

ϕ
(1)
n, j (x) + ãn

j ϕ
(1)
n, jn

(x)
)

.

Using the primal scaling function construction in Eq. (27),

we obtain an expression for the primal wavelet function

ψ
(1)
jn

(x) =
an

jn

|an
jn
|2 ϕ

(1)
n, jn

(x) −
∑

j∈Jn

bn
j ϕ

(1)
n−1, j (x),

which demonstrates the recursive construction from stage n

to n − 1 and concludes the proof for the primal wavelet and

scaling function construction.
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For the dual scaling functions, we use the update equations

and the fact that cr , j =< f , ϕ̃r , j > for any r , hence we have,

at stage n,

< f , ϕ̃n−1, j > = < f , ϕ̃n, j > +bn
j < f , ψ̃ L

n, j >,∀ j ∈ Jn

< f , ϕ̃n−1, j > = < f , ϕ̃n, j > ∀ j /∈ Jn,

where ψ̃ L denotes the dual wavelet function corresponding

to the L-filter only.

Thus, the recursive relations for the dual scaling functions

are

ϕ̃n−1, j (x) = ϕ̃n, j (x) + bn
j ψ̃

L
n, j (x),∀ j ∈ Jn

ϕ̃n−1, j (x) = ϕ̃n, j (x),∀ j /∈ Jn .

Similarly, since d
(1)
jn

= cn, jn an
jn

−
∑

j∈Jn
an

j cn, j , we have

< f , ψ̃
(1)
jn

>=< f , an
jn
ϕ̃n, jn −

∑

j∈Jn
an

j ϕ̃n, j > and we

obtain the dual wavelet construction

ψ̃
(1)
jn

= an
jn
ϕ̃n, jn (x) −

∑

j∈Jn

an
j ϕ̃n, j (x).

These steps are subsequently reiterated, and hence the same

also holds for stage r .

In order to obtain the primal scaling function recursive

construction corresponding to the second basis, we proceed

in the same way as for the first basis and similarly obtain

ϕ
(2)
n−1, j (x) = ϕ

(2)
n, j (x) + ã

n

jϕ
(2)
n, jn

(x), if j ∈ Jn,

ϕ
(2)
n−1, j (x) = ϕ

(2)
n, j (x), if j /∈ Jn .

We obtain the primal wavelet equations in a similar manner

to the previous development

ψ
(2)
jn

(x) =
an

jn

|an
jn
|2 ϕ

(2)
n, jn

(x) −
∑

j∈Jn

bn
j ϕ

(2)
n−1, j (x).

The above equations show that the primal scaling and wavelet

functions corresponding to the second basis are the con-

jugates of the corresponding primal and wavelet functions

under the first basis, respectively.

As already explained, the update step is the same for both

bases and cr ,k =< f , ϕ̃
(1)
r ,k >=< f , ϕ̃

(2)
r ,k >, for all r , k

thus the dual scaling functions coincide under both bases

(ϕ̃
(1)
r ,k = ϕ̃

(2)
r ,k ).

For the dual wavelet function, following the same approach

as above, we obtain

ψ̃
(2)
jn

(x) = an
jn
ϕ̃n, jn (x) −

∑

j∈Jn

an
j ϕ̃n, j (x).

This concludes the proof for the second basis. ⊓⊔

A.2 Proof of Proposition 2

Let {X t } be a zero-mean complex-valued stationary long

memory series with autocovariance γX (τ ) ∼ cγ |τ |−β . We

note here that for improper processes of the type considered in

Sykulski and Percival (2016), the pseudo-autocovariance has

the same decay rate as the autocovariance (rX (τ ) ∼ cr |τ |−β )

whilst for proper processes, rX (τ ) = 0, ∀τ , hence we

shall concentrate on the lifting decorrelation properties for

improper processes.

The autocovariance of {X t } can be written as γX (ti −t j ) =
E(X ti X t j

) and rX (ti − t j ) = E(X ti X t j
), assuming E(X t ) =

0, where 0 is to be understood as the complex number 0 =
0+ i 0. Hence, E(d

(ℓ)
j ) = 0 for ℓ = 1, 2. In what follows, we

drop the superscript (ℓ) in order to avoid notational clutter.

Using the assumption that E(d j ) = 0, it follows that

E(d jr d jk ) =
∫

R

ψ̃ jr
(t)

{∫

R

ψ̃ jk (s)γX (t − s) ds

}

dt, (29)

where we have used d jr =< X , ψ̃ jr >, and the timepoints

jr and jk are distinct. In what follows, denote the interval

length (i.e. continuous scale) of detail d jr by Ir , jr .

Since from (15) and (22), regardless of whether we work

with the basis indexed by ℓ = 1 or ℓ = 2, the (dual) wavelet

functions are linear combinations of the (same) dual scaling

functions, hence Eq. (29) can be rewritten as

E(d jr d jk ) =
∫

R

⎧

⎨

⎩

ϕ̃r , jr (t) −
∑

i∈Jr

Ar
i ϕ̃r ,i (t)

⎫

⎬

⎭

×
∫

R

⎧

⎨

⎩

ϕ̃k, jk (s) −
∑

j∈Jk

Ak
j ϕ̃k, j (s)

⎫

⎬

⎭

γX (t − s) ds dt, (30)

where A generically denotes the appropriate coefficient that

corresponds to basis ℓ = 1 or ℓ = 2, but ϕ̃ is the same for

both bases.

As C2-LOCAAT progresses, the (dual) scaling functions

are defined recursively as linear combinations of (dual) scal-

ing functions at the previous stage, see, for example, Eq. (19).

Hence, the scaling functions in the above equation can be

written as linear combinations of scaling functions at the

first stage (i.e. r = n). Due to the linearity of the integral

operator, (30) can be written as a linear combination with

complex-valued coefficients of terms like

Bn,i, j :=
∫

R

ϕ̃n,i (t)

{∫

R

ϕ̃n, j (s)γX (t − s) ds

}

dt

=
∫

R

ϕ̃n,i (t)
(

ϕ̃n, j⋆γX

)

(t) dt, (31)
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where ⋆ is the convolution operator, and i and j refer to time

locations that were involved in obtaining d jr and d jk . Note

that at this stage we do not use complex conjugation as the

(dual) scaling functions are initially defined (at stage r = n)

as scaled characteristic functions of the intervals associated

with the observed times, i.e. ϕ̃n,i (t) = I −1
n,i χIn,i

(t) (thus real-

valued).

Using Parseval’s theorem in Eq. (31) gives

Bn,i, j = (2π)−1

∫

R

ˆ̃ϕn,i (ω)

(

̂ϕ̃n, j⋆γX

)

(ω) dω

= (2π)−1

∫

R

ˆ̃ϕn,i (ω) ˆ̃ϕn, j (ω) fX (ω) dω, (32)

where in general ĝ denotes the Fourier transform of g. As the
Fourier transform of an initial (dual) scaling function (scaled

characteristic function on an interval, (b − a)−1χ[a,b]) is

̂
{

(b − a)−1χ[a,b]
}

(ω) = sinc {ω(b − a)/2} exp {−i ω(b + a)/2} ,

where sinc(x) = x−1 sin(x) for x �= 0 and sinc(0) = 1 is
the (unnormalized) sinc function, we can write (32) as

∫

R

sinc
(

ωIn,i /2
)

sinc
(

ωIn, j /2
)

exp
{

−i ωδ(In,i , In, j )
}

fX (ω)dω,

(33)

where δ(In,i , In, j ) is the distance between the midpoints of

intervals In,i and In, j at the initial stage n.

Equation (33) can be interpreted as the Fourier transform

of u(x) = fX (x) sinc
(

x In,i/2
)

sinc
(

x In, j/2
)

evaluated at

δ(In,i , In, j ).

Since the sinc function is infinitely differentiable and

the spectrum is Lipschitz continuous, results on the decay

properties of Fourier transforms (Shibata and Shimizu 2001,

Theorem 2.2) imply that, for i �= j , terms of the form

Bn,i, j decay as O
{

δ(In,i , In, j )
−1

}

. Hence, as in Knight et al.

(2017), the further away the time points are, the less autocor-

relation is present in the detail coefficients and as the rate of

autocorrelation decay is of reciprocal order, it is faster than

that of the original process assumed to have long memory

(hence O(|τ |−β) with β ∈ (0, 1)).

A similar argument as above applies for the pseudo-

covariance rX (ti − t j ) = E(X ti X t j
), as

E(d jr d jk ) =
∫

R

ψ̃ jr
(t)

{∫

R

ψ̃ jk
(s)rX (t − s) ds

}

dt, (34)

and concludes the proof. ⊓⊔

A.3 Proof of Proposition 3

As Cov(X ti , X t j
) = γX (ti − t j ) and d jr =< X , ψ̃ jr >, it

follows that d jr has mean zero (as the original process is

zero-mean) and in a similar manner to (29) we have

E(|d jr |2) =
∫

R

ψ̃ jr
(t)

{∫

R

ψ̃ jr (s)γX (t − s) ds

}

dt, (35)

where again we have dropped the basis index ℓ = 1, 2 for

notational brevity and we remind the reader that | · p| denotes

the C-modulus. As before, we denote the associated interval

length of the detail d jr by Ir , jr .

Using the recursiveness in the dual wavelet construction

(Eqs. (15) and (22)), it follows that the (dual) wavelet func-

tions are linear combinations of the (same) scaling functions.

For the first basis, Eq. (35) can be rewritten as

E(|d(1)
jr

|2) =
∫

R

⎧

⎨

⎩

ar
jr
ϕ̃r , jr

(t) −
∑

j∈Jr

ar
j ϕ̃r , j (t)

⎫

⎬

⎭

×
∫

R

⎧

⎨

⎩

ar
jr
ϕ̃r , jr (s) −

∑

j ′∈Jr

ar
j ′ ϕ̃r , j ′ (s)

⎫

⎬

⎭

γX (t − s) ds dt . (36)

This can be expanded as

E(|d(1)
jr

|2) =
∫

R

∫

R

ar
jr

ar
jr
ϕ̃r , jr

(t)ϕ̃r , jr (s)γX (t − s) ds dt

−
∑

j∈Jr

∫

R

∫

R

ar
j a

r
jr
ϕ̃r , j (t)ϕ̃r , jr (s)γX (t − s) ds dt

−
∑

j ′∈Jr

∫

R

∫

R

ar
jr

ar
j ′ ϕ̃r , jr

(t)ϕ̃r , j ′ (s)γX (t − s) ds dt

+
∑

j∈Jr

∑

j ′∈Jr

∫

R

∫

R

ar
j a

r
j ′ ϕ̃r , j (t)ϕ̃r , j ′ (s)γX (t − s) ds dt . (37)

As in Proposition 1, using Parseval’s theorem we obtain that

the above is a linear combination of terms of the form

Br ,i, j =
∫

R

χ̃r ,i (t)

{∫

R

χ̃r , j (s)γX (t − s)ds

}

dt

=
∫

R

sinc(ωIr ,i /2) sinc(ωIr , j /2)e−i ωδ(Ir ,i ,Ir , j ) fX (ω)dω, (38)

where recall that the hat notation denotes the Fourier trans-

form of a function and δ(Ir ,i , Ir , j ) denotes the distance

between the midpoints of intervals Ir ,i and Ir , j .

Due to the artificial-level construction, the sequence of

lifting integrals is approximately log-linear in the artificial

level [see Knight et al. (2017) for details], i.e. for those points

jr in the j⋆th artificial level, we have log2

(

Ir , jr

)

= j⋆ + Δ
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where Δ ∈ {−1 + log2(α0), log2(α0)} for some α0, thus

Ir , jr = R2 j⋆ for some constant R > 0.

Now suppose i = j and both points belong to the j⋆th

artificial level. In Eq. (38), we make a change of variable

η = ωR2 j⋆ to obtain

Br ,i,i =
∫

R

sinc2(η/2) fX (η/R2 j⋆ )
(

R2 j⋆
)−1

dη

∼
∫

R

sinc2(η/2)c f |η|−α
(

R2 j⋆
)α−1

dη, ( j⋆ → ∞)

= 2 j⋆(α−1)

∫

R

c f Rα−1 sinc2(η/2)|η|−αdη

= 2 j⋆(α−1) Rα−14c f Γ (−1 − α) sin(πα/2) (39)

= 2 j⋆(α−1) Rα−1 M, (40)

where α ∈ (0, 1), Γ is the Gamma function and M =
4c f Γ (−1 − α) sin(πα/2).

If i �= j are points from the same neighbourhood Jr and

both belong to the same artificial level j⋆, then their artificial

scale measure will be the same. Performing the same change

of variable as above, we obtain (as ( j⋆ → ∞)

Br ,i, j ∼
∫

R

sinc2(η/2)e−i η
(

R2 j⋆
)−1

c f |η|−α
(

R2 j⋆
)α

dη,

= 2 j⋆(α−1)c f Rα−1

∫

R

sinc2(η/2)e−i η|η|−αdη

= 2 j⋆(α−1) Rα−14c f (2
α − 1) sin(πα/2)Γ (1 − α) (41)

= 2 j⋆(α−1) Rα−1 N , (42)

where N = 4c f (2
α − 1) sin(πα/2)Γ (1 − α).

All terms in (37) involve points from the same neighbour-

hood Jr , and thus using (40), (41) together with the linearity

of the integral operator, we have that

E(|d(1)
jr

|2) ∼ 2 j⋆(α−1) Rα−1

×

⎛

⎝M2|ar
jr
|2+N 2

∑

j

∑

j ′
ar

j a
r
j ′

−M N
∑

j

ar
j a

r
jr
−M N

∑

j ′
ar

jr
ar

j ′

⎞

⎠

= 2 j⋆(α−1) Rα−1|M ar
jr

− N
∑

j∈Jr

ar
j |2

= C 2 j⋆(α−1),

where C is a constant depending on c f , R and α.

A similar argument applies to the second basis and com-

pletes the proof. ⊓⊔
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