508 research outputs found

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    A Comparison of Cosmic Ray Composition Measurements at the Highest Energies

    Get PDF
    In recent years the Fly's Eye and Akeno groups have presented analyses of the cosmic ray mass composition at energies above 10^17 eV. While the analysis of the Fly's Eye group points to a likely change in mass composition from heavy to light at energies above 10^18 eV, the Akeno analysis favours an unchanging composition. However, the two groups base their conclusions on simulations using quite different hadronic models. Here we present a comparison of the experiments using the same hadronic model and find that the agreement between the experiments is much improved. Under this model, both experiments measure a composition rich in iron around 10^17 eV which becomes lighter at higher energies. However, the agreement is not complete, which indicates scope for improvement of the interaction model, or perhaps the need for a re-examination of the experimental results.Comment: 15 pages, uses epsfig.sty with 6 figures. Submitted to Astroparticle Physics, 25th January 1998. This is a revised version (21st May 1998) which addresses some referee comments, and which clarifies discussions of our result

    Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes

    Full text link
    To assess how future progress in gravitational microlensing computation at high optical depth will rely on both hardware and software solutions, we compare a direct inverse ray-shooting code implemented on a graphics processing unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU, and a recent implementation of a parallel tree code suitable for a CPU-based cluster supercomputer. We examine the accuracy of the tree codes through comparison with a direct code over a much wider range of parameter space than has been feasible before. We demonstrate that all three codes present comparable accuracy, and choice of approach depends on considerations relating to the scale and nature of the microlensing problem under investigation. On current hardware, there is little difference in the processing speed of the single-core CPU tree code and the GPU direct code, however the recent plateau in single-core CPU speeds means the existing tree code is no longer able to take advantage of Moore's law-like increases in processing speed. Instead, we anticipate a rapid increase in GPU capabilities in the next few years, which is advantageous to the direct code. We suggest that progress in other areas of astrophysical computation may benefit from a transition to GPUs through the use of "brute force" algorithms, rather than attempting to port the current best solution directly to a GPU language -- for certain classes of problems, the simple implementation on GPUs may already be no worse than an optimised single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom

    From Big Crunch to Big Bang

    Get PDF
    We consider conditions under which a universe contracting towards a big crunch can make a transition to an expanding big bang universe. A promising example is 11-dimensional M-theory in which the eleventh dimension collapses, bounces, and re-expands. At the bounce, the model can reduce to a weakly coupled heterotic string theory and, we conjecture, it may be possible to follow the transition from contraction to expansion. The possibility opens the door to new classes of cosmological models. For example, we discuss how it suggests a major simplification and modification of the recently proposed ekpyrotic scenario.Comment: 16 pages, compressed and RevTex file, including three postscript figure files. Minor changes, version to appear in Physical Review

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors

    Get PDF
    The surface composition of perovskite films is very sensitive to film processing and can deviate from the optimal, which generates unfavorable defects and results in efficiency loss in solar cells and slow response speed in photodetectors. An argon plasma treatment is introduced to modify the surface composition by tuning the ratio of organic and inorganic components as well as defect type before deposition of the passivating layer. It can efficiently enhance the charge collection across the perovskite–electrode interface by suppressing charge recombination. Therefore, perovskite solar cells with argon plasma treatment yield enhanced efficiency to 20.4% and perovskite photodetectors can reach their fastest respond speed, which is solely limited by the carrier mobility

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Observing Supermassive Black Holes across cosmic time: from phenomenology to physics

    Full text link
    In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and Treves A. (Eds), 2015, Springer International Publishing AG, Cha

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore