We report electrical transport measurements on individual disordered carbon
nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template.
In both as-grown and annealed types of nanotubes, the low-field conductance
shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that
hopping conduction is the dominant transport mechanism, albeit with different
disorder-related coefficients T_{0}. The field dependence of low-temperature
conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at
sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit
weak positive magnetoresistance at low T = 1.7 K. Comparison with theory
indicates that our data are best explained by Coulomb-gap variable range
hopping conduction and permits the extraction of disorder-dependent
localization length and dielectric constant.Comment: 10 pages, 5 figure