701 research outputs found

    Current preventive policies and practices against Vaccine-Preventable Diseases and tuberculosis targeted for workers from hospitals of the Sardinia Region, Italy

    Get PDF
    Introduction. Health care Workers are exposed to infectious diseases more than the general population. Many of these infections are preventable by vaccination. The objective in this study is to investigate whether, how, and which vaccination underwent Sardinia Health Care Workers (HCWs) and the variability of policies in different Hospital Health Managements of the whole region. Methods. In March 2013, we enrolled the Hospital Health Management of all the 32 Sardinia hospitals. We investigate on immunity against vaccine-preventable diseases and education campaigns about recommended vaccinations for HCWs. Flu, hepatitis B, measles-mumps-rubella, varicella and tuberculosis were the objects of our research. Results. In most of the hospitals, influenza vaccination coverage among HCWs is less than 6%. Hepatitis B antibody assay was performed in all the respondent hospitals but only 14 had available data as collected electronically. Most of the hospitals did not perform serological tests for the evaluation of antibodies against Varicella, Measles, Mumps and Rubella in their HCWs. In 30 hospitals Mantoux test was replaced or integrated by "in vitro" test for health surveillance protocols. Conclusions. This method produced a large amount of data in small time and at a low cost. Sending back data to respective Hospital Health Management (HHM) we took a step towards greater awareness of the issue of biological risks of HCWs and of vaccine coverage

    Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Water, energy, food, land and climate form a tightly-connected nexus in which actions on one sector impact other sectors, creating feedbacks and unanticipated consequences. This is especially because at present, much scientific research and many policies are constrained to single discipline/sector silos that are often not interacting (e.g., water-related research/policy). However, experimenting with the interaction and determining how a change in one sector could impact another may require unreasonable time frames, be very difficult in practice and may be potentially dangerous, triggering any one of a number of unanticipated side-effects. Current modelling often neglects knowledge from practice. Therefore, a safe environment is required to test the potential cross-sectoral implications of policy decisions in one sector on other sectors. Serious games offer such an environment by creating realistic 'simulations', where long-term impacts of policies may be tested and rated. This paper describes how the ongoing (2016-2020) Horizon2020 project SIM4NEXUS will develop serious games investigating potential plausible cross-nexus implications and synergies due to policy interventions for 12 multi-scale case studies ranging from regional to global. What sets these games apart is that stakeholders and partners are involved in all aspects of the modelling definition and process, from case study conceptualisation, quantitative model development including the implementation and validation of each serious game. Learning from playing a serious game is justified by adopting a proof-of-concept for a specific regional case study in Sardinia (Italy). The value of multi-stakeholder involvement is demonstrated, and critical lessons learned for serious game development in general are presented.The work described in this paper has been conducted within the project SIM4NEXUS. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 689150 SIM4NEXUS

    Contributions of a global network of tree diversity experiments to sustainable forest plantations

    Get PDF
    The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1–15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network

    Competence and training in interventional pulmonology

    Get PDF

    Study of the Resistive Plate Chambers for the ALICE Dimuon Arm

    Get PDF
    Presentation made at RPC99 and submitted to Elsevier PreprintThe trigger system for the ALICE Dimuon Arm will be based on Resistive Plate Chambers. An RPC prototype, with electrodes made of low resistivity bakelite (rho ~ 3.109 Ωcm) has been tested both at the SPS and at the GIF. The results for operation in streamer mode are presented here

    Influence of Temperature and Humidity on Bakelite Resistivity

    Get PDF
    Presentation made at RPC99 and submitted to Elsevier PreprintThe use of phenolic or melaminic bakelite as RPC electrodes is widespread. The electrode resistivity is an important parameter for the RPC performance. As recent studies have pointed out, the bakelite resistivity changes with temperature and is influenced by humidity. In order to gain a quantitative understanding on the influence of temperature and humidity on RPC electrodes, we assembled an apparatus to measure resistivity in well-controlled conditions. A detailed description of the experimental set-up as well as the first resistivity measurements for various laminates in different environmental conditions are presented

    An integrated approach shows different use of water resources from Mediterranean maquis species in a coastal dune ecosystem

    Get PDF
    An integrated approach has been used to analyse the dependence of three Mediterranean species, A. unedo L., Q. ilex L., and P. latifolia L. co-occurring in a coastal dune ecosystem on two different water resources: groundwater and rainfed upper soil layers. The approach included leaf level gas exchanges, sap flow measurements and structural adaptations between 15 May and 31 July 2007. During this period it was possible to capture different species-specific response patterns to an environment characterized by a sandy soil, with a low water retention capacity, and the presence of a water table. The latter did not completely prevent the development of a drought response and, combined with previous studies in the same area, response differences between species have been partially attributed to different root distributions. Sap flow of A. unedo decreased rapidly with the decline of soil water content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo ranged between 122.2 and 122.7MPa throughout the measuring period, while in Q. ilex it decreased down to 123.4MPa at the end of the season. A. unedo was the only species that responded to drought with a decrease of its leaf area to sapwood area ratio from 23.9\ub11.2 (May) to 15.2\ub11.5 (July). While A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss did not occur for Q. ilex, whereas P. latifolia was able to slightly increase its hydraulic conducitivity. These differences show how different plant compartments coordinate differently between species in their responses to drought. The different responses appear to be mediated by different root distributions of the species and their relative resistances to drought are likely to depend on the duration of the periods in which water remains extractable in the upper soil layers

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Improved sapflow methodology reveals considerable night-time ozone uptake by Mediterranean species

    Get PDF
    Due to the evident tropospheric ozone impact on plant productivity, an accurate ozone risk assessment for the vegetation has become an issue. There is a growing evidence that ozone stomatal uptake may also take place at night and that the night-time uptake may be more damaging than diurnal uptake. Estimation of night-time uptake in the field is complicated because of instrumental difficulties. Eddy covariance technology is not always reliable because of the low turbulence at night. Leaf level porometry is defective at relative humidity above 70% which often takes place at night. Improved sap flow technology allows to estimate also slow flows that usually take place at night and hence may be, at present, the most trustworthy technology to measure night-time transpiration and hence to derive canopy stomatal conductance and ozone uptake at night. Based on micrometeorological data and the sap flow of three Mediterranean woody species, the night-time ozone uptake of these species was evaluated during a summer season as drought increased. Night-time ozone uptake was from 10% to 18% of the total daily uptake when plants were exposed to a weak drought, but increased up to 24% as the drought became more pronounced. The percentage increase is due to a stronger reduction of diurnal stomatal conductance than night-time stomatal conductance

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore