404 research outputs found

    Determination of the fault plane using a single near-field seismic station with a finite-dimension source model

    Get PDF
    We explore the possibility of determining the actual fault plane of an earthquake from the inversion of near-source displacement seismograms of one station when a finite-dimension source is used instead of a point source model and when the complete displacement is taken into account, including near-field waves. Tests on synthetic seismograms and real data recorded at local distances show that this is possible even with a single, three-component station. A single accelerogram available for the Erzincan, Turkey, 1992 March 13, Ms= 6.8 earthquake is inverted and the solution found is compatible with other seismological studies and with the mechanism expected for the North Anatolian Faul

    Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data

    Get PDF
    The Mw 7.7 2007 November 14 earthquake had an epicentre located close to the city of Tocopilla, at the southern end of a known seismic gap in North Chile. Through modelling of Global Positioning System (GPS) and radar interferometry (InSAR) data, we show that this event ruptured the deeper part of the seismogenic interface (30–50 km) and did not reach the surface. The earthquake initiated at the hypocentre and was arrested ~150 km south, beneath the Mejillones Peninsula, an area already identified as an important structural barrier between two segments of the Peru–Chile subduction zone. Our preferred models for the Tocopilla main shock show slip concentrated in two main asperities, consistent with previous inversions of seismological data. Slip appears to have propagated towards relatively shallow depths at its southern extremity, under the Mejillones Peninsula. Our analysis of post-seismic deformation suggests that small but still significant post-seismic slip occurred within the first 10 d after the main shock, and that it was mostly concentrated at the southern end of the rupture. The post-seismic deformation occurring in this period represents ~12–19 per cent of the coseismic deformation, of which ~30–55 per cent has been released aseismically. Post-seismic slip appears to concentrate within regions that exhibit low coseismic slip, suggesting that the afterslip distribution during the first month of the post-seismic interval complements the coseismic slip. The 2007 Tocopilla earthquake released only ~2.5 per cent of the moment deficit accumulated on the interface during the past 130 yr and may be regarded as a possible precursor of a larger subduction earthquake rupturing partially or completely the 500-km-long North Chile seismic gap

    Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico

    Get PDF
    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M_w 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone

    The Mw = 6.3, November 21, 2004, Les Saintes earthquake (Guadeloupe): Tectonic setting, slip model and static stress changes,

    Get PDF
    International audienceOn November 21, 2004, a magnitude 6.3 earthquake occurred offshore, 10 km south of Les Saintes archipelago in Guadeloupe (French West Indies). There were more than 30000 aftershocks recorded in the following two years, most of them at shallow depth near the islands of the archipelago. The main shock and its main aftershock of February 14, 2005 (Mw = 5.8) ruptured a NE-dipping normal fault (Roseau fault), mapped and identified as active from high-resolution bathymetric data a few years before. This fault belongs to an arc-parallel en echelon fault system that follows the inner edge of the northern part of the Lesser Antilles arc, accommodating the sinistral component of oblique convergence between the North American and Caribbean plates. The distribution of aftershocks and damage (destruction and landslides) are consistent with the main fault plane location and attitude. The slip model of the main shock, obtained by inverting jointly global broadband and local strong motion records, is characterized by two main slip zones located 5 to 10 km to the SE and NW of the hypocenter. The main shock is shown to have increased the Coulomb stress at the tips of the ruptured plane by more than 4 bars where most of the aftershocks occurred, implying that failures on fault system were mainly promoted by static stress changes. The earthquake also had an effect on volcanic activity since the Boiling Lake in Dominica drained twice, probably as a result of the extensional strain induced by the earthquake and its main aftershock

    New approach to detect seismic surface waves in 1Hz-sampled GPS time series

    Get PDF
    Recently, co-seismic seismic source characterization based on GPS measurements has been completed in near- and far-field with remarkable results. However, the accuracy of the ground displacement measurement inferred from GPS phase residuals is still depending of the distribution of satellites in the sky. We test here a method, based on the double difference (DD) computations of Line of Sight (LOS), that allows detecting 3D co-seismic ground shaking. The DD method is a quasi-analytically free of most of intrinsic errors affecting GPS measurements. The seismic waves presented in this study produced DD amplitudes 4 and 7 times stronger than the background noise. The method is benchmarked using the GEONET GPS stations recording the Hokkaido Earthquake (2003 September 25th, Mw = 8.3)

    Planck 2013 results. XXII. Constraints on inflation

    Get PDF
    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions

    Citizen seismology helps decipher the 2021 Haiti earthquake

    Get PDF
    5 pages, 4 figures, supplementary materials https://doi.org/10.1126/science.abn1045.-- Data and materials availability: All data and code used in this study are openly available. RADAR data can be obtained through ESA (Sentinel) or JAXA (Alos-2). Aftershock data can be obtained from https://ayiti.unice.fr/ayiti-seismes/ (7). The codes used to process or model the data are published and public (8). The catalog of high-precision earthquake relocated with the NLL-SSST-coherence procedure (SM4) is available as supplementary dataOn 14 August 2021, the moment magnitude (Mw) 7.2 Nippes earthquake in Haiti occurred within the same fault zone as its devastating 2010 Mw 7.0 predecessor, but struck the country when field access was limited by insecurity and conventional seismometers from the national network were inoperative. A network of citizen seismometers installed in 2019 provided near-field data critical to rapidly understand the mechanism of the mainshock and monitor its aftershock sequence. Their real-time data defined two aftershock clusters that coincide with two areas of coseismic slip derived from inversions of conventional seismological and geodetic data. Machine learning applied to data from the citizen seismometer closest to the mainshock allows us to forecast aftershocks as accurately as with the network-derived catalog. This shows the utility of citizen science contributing to our understanding of a major earthquakeThis work was supported by the Centre National de la Recherche Scientifique (CNRS) and the Institut de Recherche pour le DĂ©veloppement (IRD) through their “Natural Hazard” program (E.C., S.S., T.M., B.D., F.C., J.P.A., J.C., A.D., D.B., S.P.); the FEDER European Community program within the Interreg CaraĂŻbes “PREST” project (E.C., S.S., D.B.); Institut Universitaire de France (E.C., R.J.); UniversitĂ© CĂŽte d’Azur and the French Embassy in Haiti (S.P.); the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant no. 758210, Geo4D project to R.J. and grant no. 805256 to Z.D.); the French National Research Agency (project ANR-21-CE03-0010 “OSMOSE” to E.C. and ANR-15-IDEX-01 “UCAJEDI Investments in the Future” to Q.B.); the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant no. 949221 to Q.B.); and HPC resources of IDRIS (under allocations 2020-AD011012142, 2021-AP011012536, and 2021-A0101012314 to Q.B.With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Planck intermediate results L : Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    Get PDF
    The characterization of the Galactic foregrounds has been shown to be the main obstacle in the challenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the CBB `angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.Peer reviewe
    • 

    corecore