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SUMMARY
We explore the possibility of determining the actual fault plane of an earthquake from
the inversion of near-source displacement seismograms of one station when a finite-
dimension source is used instead of a point source model and when the complete
displacement is taken into account, including near-field waves. Tests on synthetic
seismograms and real data recorded at local distances show that this is possible even
with a single, three-component station. A single accelerogram available for the Erzincan,
Turkey, 1992 March 13, M

s
=6.8 earthquake is inverted and the solution found is

compatible with other seismological studies and with the mechanism expected for the
North Anatolian Fault.

Key words: earthquake source mechanism, Erzincan earthquake, fault plane solutions,
seismograms, strong ground motion, waveform analysis.

the fault plane with one or few stations, especially when no
INTRODUCTION

precise aftershock locations or surface rupture is available.
The point source approximation is the basic element generally Accelerograms are often used in source studies for their high-
used for the inversion of seismic sources. In this case, it is not frequency content (e.g. Spudich & Frazer 1984; Fletcher &
possible to identify the actual fault plane from the two nodal Spudich 1998) but are used more rarely for their very low-
planes by using waveform modelling. For example, automatic frequency content and/or their static part (e.g. Legrand 1995;
determinations of focal mechanisms for teleseismic or regional Delouis et al. 1997; Singh et al. 1997; Courboulex et al. 1997).
events (e.g. Buland & Gilbert 1976; Dziewonski et al. 1981; The high-frequency part is usually thought to contain infor-
Sipkin 1982, Dreger & Helmberger 1993; Kawakatsu 1995) mation about the complexity of the structure and the dynamics
give the seismic moment tensor, but cannot specify the actual of the rupture: it will not be considered in this paper. We will
fault plane. In order to select the actual fault plane, additional model only the low-frequency parts of the signals, which
information such as the distribution of aftershocks or surface contain information about the fault orientation and the slip
ruptures is needed. The approximation of a point source is direction.
generally valid for distances much larger than the size of the
fault and the wavelength considered. However, at shorter

distances this approximation is no longer appropriate, and the DESCRIPTION OF THE POINT SOURCE
finiteness of the source should be taken into account. The AND FINITE-DIMENSION SOURCE
problem of identification of the actual fault plane with a finite MODELS
source model by waveform inversion has already been con-

A physical finite-dimension fault of surface S over whichsidered in several studies (e.g. Mori & Hartzell 1990; Dreger
surface forces are applied, generating a dislocation of value D,1997), but in these works the focal mechanism is fixed in
is mathematically equivalent, in the far field, to a point sourceadvance. Here, we show that the use a finite-dimension source
where two couples of volume forces are applied, each ofmodel (FDSM hereafter) offers the possibility of determining
momentum M0=mSD (Aki & Richards 1980), where m is thethe actual fault plane with little a priori information about the
shear modulus. However, when the source dimension is largefocal mechanism, even with data from a single station.
enough relative to the hypocentral distance and to the wave-Accelerographs are well adapted to recording the dynamic
length, the source finiteness will have a strong effect on theand static parts of strong ground motions. However, many
shape of the seismograms (Fig. 1), and must be taken intoseismic regions of the world have only sparse strong motion

networks. Hence, it is important to develop methods to identify account.
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where M
ij
=M

ij
(j=0) is the seismic moment tensor at the

point j=0 and f is the source time function. In that case (1)
becomes

u
n
(x, t)=M

ijP2

−2
dt f (t)g

ni,j
(0, t; x, t) . (2)

The source time function f used in this paper is a ramp
function. The duration of the ramp corresponds to the rise time,
T , and the final constant value, D, corresponds to the final

static displacement on the fault plane (i.e. the dislocation D).
In the case of an FDSM, (1) becomes

u
n
(x, t)=P2

−2
dt PP

S
dj

1
dj

2
M
ij
(j, t)g

ni,j
(j, t; x, t) , (3)

where j= (j1 , j2 ) is the vector position describing the fault
surface S.

In this paper, we will consider the simple case where the

source time function f is the same at each point of the fault.
Thus, we separate the spatial and temporal aspects of the
source. With this simple assumption, (3) becomes

u
n
(x, t)=M

ijP2

−2
dt f (t) PP

S
dj
1
dj
2
g
ni,j

(j, t; x, t) . (4)

Eqs (2) and (4) differ in the integration over the fault plane of
surface S, and we show in this paper that this difference allows

the selection of the fault plane if (4) is used instead of (2).
Some caution is warranted in computing eq. (4). It is a joint
integration in space and time which is approximated by a

discrete summation of N point sources. As a consequence,
the temporal and spatial sampling rates cannot be chosen
independently (see the Appendix).

For the sake of simplicity, in this paper ‘near field’ (NF)
means simply that the amplitude of NF waves are not negligible
with respect to the amplitude of the far-field waves for the

wavelength considered. As mentioned by Vidale et al. (1995)
and Cummins (1997), NF waves can be clearly seen in some
cases at teleseismic distances (20°–30°) for large earthquakes.

Figure 1. Comparison of a seismogram for a point source (top)

an a finite-dimension source model (bottom). The fault plane is DISCRIMINATION OF THE FAULT PLANE
(strike, dip, rake)=(200, 70, 130) and the auxiliary plane is (312, 44, 29).

FOR A FINITE-DIMENSION SOURCE
The hypocentre is at 2 km depth and the epicentral distance is 1 km.

MODEL WITH A SINGLE STATIONFor the FDSM, the nucleation point is at the centre of a 3 km×3 km

fault, the rupture front is circular and the constant rupture velocity is In the case of a point source, M
ij

and the spatial derivatives
2.5 km s−1. The rise time is 0.15 s.

of the Green’s functions, g
ni,j

, with respect to the source
coordinates are the same, independent of which of the two
nodal planes is the fault plane. The unique path of the g

ni,j
in

that case is illustrated in Fig. 2(a). Hence, the seismogramsFor a point source situated at j=0, the displacement u
n
(x, t)

corresponding to the two nodal planes will be identicalcalculated at x and at time t is given by the representation
(Fig. 1, top).theorem (Burridge & Knopoff 1964; Aki & Richards 1980),

In the case of an FDSM, M
ij

is also the same for the two
nodal planes, but now g

ni,j
are different. In eq. (4), g

ni,j
corre-u

n
(x, t)=P2

−2
dtM

ij
(0, t)g

ni,j
(0, t; x, t) , (1)

spond to the spatial derivatives of the Green’s functions for all
the paths between the surface S and the station considered.

where g
ni

is the Green’s function tensor corresponding to a
Since the orientations of the actual fault plane and the auxiliary

displacement in the n direction due to a unit force in the i
plane are different, the corresponding paths of g

ni,j
differ, as

direction and g
ni,j

(0, t; x, t)=[∂g
ni
(j=0, t; x, t)]/∂j

j
are the

shown in Figs 2(b) and (c). Consequently, the seismograms
spatial derivatives with respect to the source coordinates j.

corresponding to the actual fault plane and the auxiliary plane
For a point source at j=0, the seismic moment tensor can

will be different (Fig. 1, bottom). This difference in the wave-
be written as:

forms of the seismograms will allow for the selection of the
actual fault plane, as shown below.M

ij
(0, t)=M

ij
f (t) ,
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front with a constant velocity and a constant dislocation over

a rectangular fault. We took a nucleation point at the centre
of the fault. The influence of the position of the hypocentre,
controlling part of the history of the rupture, is important for

modelling large earthquakes, but will not be considered here.
The influence of the position of the nucleation point is discussed
in more detail in Delouis & Legrand (1999).

We perform waveform modelling of body and surface waves
in the time domain using a Monte Carlo inversion in order to
find the orientation of the fault plane (strike and dip) and the

direction of the slip vector on this fault (rake). The selection
criterion in the Monte Carlo inversion is the normalized rms
error (hereafter simply called rms) between the observed data

(recorded seismograms) and the calculated synthetics. A first
series of trials is performed for the entire space of solutions,
and several subseries are made around the best solutions of

the first series (zoom effect) to define the minimum, better. In
order to find out whether we can select the fault plane from
the two nodal planes, when a zoom is performed around a

solution, we systematically carry out a second zoom around
the corresponding auxiliary plane.Figure 2. Scheme showing the different paths of the Green’s functions

(dashed lines) from the source to the station (triangle) for a point

source model (a) and an FDSM (b and c). (a) The unique paths of the FIRST SYNTHETIC TEST
Green’s functions for a point source (bold point) does not allow one

to distinguish the fault plane from the auxiliary plane (the two lines). We apply the method with a point source model and with an
(b), (c) The different paths from the different points of the fault plane FDSM for a first synthetic example, where the focal mechanism
to the receiver allow one to discriminate the fault plane (bold line is fixed to (strike, dip, rake)= (200°, 70°, 130°). We calculate
in b) from the auxiliary plane (bold line in c). the corresponding three-component seismograms, called the

‘synthetic data’, which simulate observed data. These ‘synthetic
data’ are inverted with the Monte Carlo approach described

METHOD OF INVERSION
above, without adding any noise to the seismograms.

The ‘synthetic data’ that we invert are shown for a pointWe invert NF records using a single three-component accelero-
gram using two models: a point source model and an FDSM. source and for an FDSM in Fig. 1 for the fault plane (strike,

dip, rake)= (200°, 70°, 130°) and the auxiliary plane (strike,The spatial derivatives g
ni,j

of the Green’s functions are calcu-
lated at the surface of a half-space using Johnson’s (1974) dip, rake)=(312°, 44°, 29°). In this figure, we only show the

E–W component for the sake of simplicity.method, which is based on Cagniard–de Hoop integration

in the time domain. This calculation gives an exact analytic The results of the inversion of the synthetic data are shown
for the point source and for the FDSM in Fig. 3. In both cases,representation of the complete displacement field, including NF

waves. In the case of an FDSM, some parameters (the dimen- the original focal mechanism is retrieved. In the case of a point

source, the rms values are equal for the two nodal planes,sion of the fault, the dislocation, the rise time and the rupture
velocity) are fixed a priori, because with a single station these hence they cannot be distinguished. This is expected since, as

indicated above, the seismograms corresponding to the twoparameters cannot be constrained. We use a circular rupture

Figure 3. Rms results corresponding to the inversions for the first synthetic test. (Top) For a point source. The two nodal plane cannot be

distinguished. (Middle) For an FDSM. The fault plane (strike, dip, rake)= (200°, 70°, 130°) can be distinguished from the auxiliary plane (strike,

dip, rake)= (312°, 44°, 29°). (Bottom) Representation of all the 6181 sorts made by the Monte Carlo method.
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nodal planes are identical. However, in the case of the FDSM, the synthetic case of Fig. 3 because the calculation of synthetic

the rms values corresponding to the two nodal planes are seismograms is time-consuming for such a large source. Hence,
significantly different, thus the fault plane can be clearly the uniqueness of the solution is not studied so completely.
distinguished from the auxiliary plane, which has been rejected This earthquake is a vertical strike-slip fault. In such a case,
by the inversion. This is due to the difference in the correspond- there is an ambiguity of ±180° in both strike and rake. This
ing seismograms. The results of the inversions are given in means that the solution (strike, dip, rake)= (120°, 85°, −180°)
Table 1. The error estimates correspond to solutions having and its auxiliary plane (210°, 90°, 5°) are almost the same as
an rms within 10 per cent of the best rms found. that with fault plane (300°, 85°, −180°) and auxiliary plane

(30°, 90°, 5°). We carry out a second synthetic test to evaluate

the resolution of the method described above for this particularAPPLICATION TO THE ERZINCAN
situation. We construct the ‘synthetic data’ with a focal mech-( TURKEY ) EARTHQUAKE: SECOND
anism (strike, dip, rake)= (120°, 85°, −180°) close to the actualSYNTHETIC TEST AND INVERSION OF
solution of the Erzincan earthquake. The first row of Fig. 4 showsREAL DATA
the result of the inversion for a point source; four solutions

The Erzincan earthquake (1992 March 13, M
s
=6.8) occurred can explain the ‘synthetic data’, which are the four triplets

along the North Anatolian Fault (Fuenzalida et al. 1997). The
(strike, dip, rake) mentioned above. The second row of Fig. 4

main shock was recorded by a single SMA-1 accelerograph
also shows the solution for an FDSM; now only two solutions

located at an epicentral distance of about 10 km. Trial-and-
can explain the ‘synthetic data’, corresponding to the two triplets

error modelling of the seismograms, integrated from accelero-
(strike, dip, rake)= (120°, 85°, −180°) and (300°, 85°, −180°)

grams, has been carried out by Legrand (1995) and Bernard
mentioned above. Finally, the third and fourth rows of Fig. 4

et al. (1997). Legrand (1995) modelled the three components
show the solution for the Erzincan earthquake for a point

to determine the focal mechanism by trial and error, followed
source and an FDSM, respectively. As for the synthetic test, it

by a systematic search around the best solution using a simple
is not possible to identify the fault plane with a point sourcemodel of propagation. Bernard et al. (1997) modelled the two
model, whereas it is possible to select the fault plane from thehorizontal components, taking into account the basin structure,
two nodal planes with an FDSM, because the two possiblewith a fixed focal mechanism. In this paper we invert the same
solutions found do not correspond to the classical indeter-single three-component seismogram, as a test case for the
minacy between the two nodal planes, but to the ambiguity ofmethod described above, focusing on the selection of the
±180° in both strike and rake mentioned above. The bestfault plane.
solution corresponding to an FDSM is (124°, 90°, −172°)±The medium of propagation used is a half-space, with
(2°, 1°, 3°), which is almost the same fault plane as the secondV

P
=6.0 km s−1 and V

S
=3.5 km s−1. The size of the fault has

minimum found (306°, 86°, 171°)± (2°, 3°, 2°). These solutionsbeen taken as 25 km×10 km, in accordance with the after-
are compatible with the right-lateral strike-slip mechanism ofshock distribution and the magnitude. The rise time is 0.7 s
the North Anatolian Fault (Fuenzalida et al. 1997; Bernardand the rupture velocity is Vr=3 km s−1 (Legrand 1995). We
et al. 1997). Hence, in the case of the Erzincan earthquake theassume a circular rupture front, initiating at the centre of the
correct fault plane has been automatically selected. The detailsfault. In the case of Erzincan, the number of trials (5381) in

the Monte Carlo inversion is smaller than the 6181 trials for of the solutions are given in Table 1.

Table 1. Errors are calculated from the standard deviation of the data with an rms smaller than the smallest rms +10 per cent of the smallest

rms. Note that the focal mechanism (120°, 85°, ±180°) is almost the same as (300°, 85°, ±180°); see text. The corresponding auxiliary planes are

(210°, 90°, 5°) and (30°, 90°, 5°), respectively. FDSM=finite-dimension source model. All values are in degrees.

Focal mechanism (Input) Best solutions (strike, dip rake) Data type Model

(200, 70, 130) (203.0, 70.3, 127.6)± (10, 5, 15) Synthetics Point Source

= and

(312, 44, 29) (314.4, 44.0, 31.9)±(11, 11, 7)

(200, 70, 130) (205.0, 66.6, 123.7)± (11, 7, 13) Synthetics FDSM

(120, 85, −180) (118.3, 82.2, 175.3)± (4, 4, 3) Synthetics Point Source

= (213.3, 86.2, 5.3)±(4, 2, 3)

(210, 90, 5) (304.8, 86.6, 175.2)± (3, 2, 3)

(31.5, 83.2, 4.6)± (4, 4, 3)

(120, 85, −180) (118.3, 83, 175.4)± (3, 4, 3) Synthetics FDSM

(306.0, 87.1, 173.6)± (2, 2, 2)

(120.0, 71.0, 175.0)± (5, 10, 3) Real data Point source

210.0, 85.0, 7.0)± (5, 3, 4) (Turkey)

(304.0, 79.0, 174.0)± (4, 7, 3)

(33.0, 75.0, 9)±(5, 4, 6)

(124.0, 90.0, −172.0)± (2, 1, 3) Real data FDSM

(306.0, 86.0, 171.0)± (2, 3, 2) (Turkey)
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Figure 4. Rms errors for the second synthetic test for a point source model (first row) and an FDSM (second row) for a focal mechanism (strike,

dip, rake)= (120°, 85°, −180°). The third and fourth rows correspond to the real Erzincan earthquake data for a point source and an FDSM,

respectively. The last row corresponds to the sorts of Monte Carlo methods. A time shift of 0.12 s has been applied on the east component of the

Erzincan data because of shear wave splitting observed on the data attributed to anisotropy (Bernard et al. 1997).

The seismograms corresponding to the best results are With a finite-dimension source model, a more realistic (i.e.
shown in Fig. 5 for a point source and an FDSM. The smaller) local rise time can be used. The low frequencies of the
dislocation found is 1.5 m, corresponding to a seismic moment calculated seismogram will be naturally generated by the
of 1.12×1026 dyn cm for a shear modulus of 3×1011 dyn cm−2. spatial integration over the fault plane (see Fig. 6) and not by

increasing the rise time artificially when a point source is used.

Although we showed that the recovery of the fault planeDISCUSSION
with a single station is feasible, we do not imply that it will be

NF waves are often omitted in the calculation of synthetic possible in all cases. We cannot exclude the fact that for some
seismograms. However, their contribution can be important in specific station–fault geometries the constraint on the fault
the case of a point source (see the NF ramp between the P parameter may degenerate.
and S pulses in Fig. 6, top), and extremely important in the The velocity seismogram of the Erzincan earthquake is
case of a finite-dimension source (Fig. 6, bottom). Note that surprisingly low frequency, which seems to indicate a relatively
NF waves often appear as a ramp for a point source, whereas simple rupture. This justifies the use of a simple model of
they often appear as a broad, low-frequency signal for a homogeneous slip. However, for very large earthquakes,
finite source. the rupture may become very heterogeneous, and it should

NF waves decay as 1/r2, whereas the far-field waves decay certainly be taken into account in order to model adequately
as 1/r, where r is the radial distance from the source to the the seismograms. Here, a certain degree of heterogeneity may
receiver. Hence, a small change in distance implies a larger be invoked to explain part of the misfit in the modelling of
change in amplitude of the NF waves than the far-field waves, the second pulse of the Erzincan data. The effect of the
and, as a consequence, NF waves provide a sharp constraint Erzincan basin, which we did not take into account, should
on the orientation of a finite fault. This property is discussed also explain the misfit of the second pulse. However, the
in more detail and has been used to constrain the location method appears to be robust enough, in the sense that this
and the focal mechanism of volcanic tremors for a point source misfit did not seem to introduce a significant bias in the
by Legrand et al. (1999). estimation of the focal mechanism.

The waveforms of a moderate-sized earthquake may be

modelled in the NF with a point source approximation (e.g.
Singh et al. 1997; Schwartz 1995; Fan & Wallace 1991). In this CONCLUSIONS
case, the rise time has to be adjusted to the width of the

The actual fault plane can be determined, with little a prioriobserved waveform pulses. This leads to a long rise time which
information on the focal mechanism, by waveform modelling,measures the total rupture duration of the faulting. It is longer

than the ‘physical’ rise time of a specific point on the fault. even with a single station, if an FDSM is used instead of a

© 1999 RAS, GJI 138, 801–808
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Figure 5. Result of the modelling of the three-component Erzincan

seismogram (fine line) for a point source model (dotted line) and

an FDSM (bold line), with the corresponding focal mechanism

(lower-hemisphere, equal-area projection).

point source and if NF waves are taken into account in the
calculation of Green’s functions. With a single station, some
of the source parameters such as the fault dimension, the rise

time and the rupture velocity cannot be solved and have to be
fixed a priori in the inversion. As a consequence, the knowledge
of the source can be greatly improved not only by increasing
the number of stations (as is often done) but also by considering

Figure 6. Vertical displacement for a pure strike-slip mechanismFDSMs and using NF waves.
recorded at station A. The rupture propagates towards A. N is theThe method of selection of the fault plane from the two
number of point sources. An FDSM is well described by at least 400nodal planes described in this paper has been applied to local
point sources. See text for more details. The rupture front here is

earthquakes but can be applied identically to regional and
taken as linear and unilateral, in the sense shown by the arrow at the

teleseismic events (especially for large earthquakes). This study bottom of the figure, the rupture velocity being 3 km s−1. The size of
points out the importance of low-frequency modelling in the the fault is 4 km×4 km and the coordinates of A are (3 km N, 0.1 km E);
NF. These low frequencies have two origins. First, NF waves Dt=0.02 s. Vertical scale in arbitrary units, depending on the value of
are low frequency by nature. Second, the spatial and temporal the dislocation D, which is the same for all of this figure.

finiteness of the source generate low frequencies. Hence, the
use of accelerographs and/or broad-band stations in the NF We have shown that in the case of the Erzincan (Turkey)
is crucial for recording the static part and/or the low-frequency earthquake, the fault plane can be distinguished from the two
signal in order to constrain the fault plane orientation and the nodal planes with records from a single station when an

FDSM and NF waves are used. The selected fault planeslip vector.
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1600 point sources. If too small a number of point sources isFuenzalida, H. et al., 1997. Mechanism of the 1992 Erzincan earthquake
used in the summation, high frequencies arise ( like for N=4,and its aftershocks, tectonics of the Erzincan basin and decoupling
16, 64) due to the space–time samplings not being respected.on the North Anatolian Fault, Geophys. J. Int., 129, 1–28.
We see that 400 point sources is almost enough to describeHartzell, H., Frazier, G. & Brune, J., 1978. Earthquake modeling in a

homogeneous half-space, Bull. seism. Soc. Am., 68, 301–316. the finiteness of the source. Note the large difference between
Johnson, L., 1974. Green’s function for Lamb’s problem, Geophys. the signals from a point source and from a finite-dimension

J. R. astr. Soc., 37, 99–131. source. For a point source, positive and negative parts of the
Kawakatsu, H., 1995. Automated near-realtime CMT inversion, signal exist, whereas for a finite source, only a positive signal

Geophys, Res, L ett., 21, 1963–1966.
remains. A finite-dimension source contains many more low

Legrand, D., 1995. Study of a population of tectonic and volcanic
frequencies than a single point source. For example, the P

earthquakes in near-field: from classical seismology to non linear
and S waves which have a form similar to a Dirac distributioneffects, PhD thesis, University of Strasbourg (in French).
almost disappear in the case of a finite source; P and S wavesLegrand, D., Kaneshima, S. & Kawakatsu, H., 1999. Moment tensor
cannot be distinguished for a finite-dimension source, whereasanalysis of near-field broadband waveforms at Aso volcano, Japan,

J. Volc. Geotherm. Res., in press. it is possible for a point source. These low frequencies are
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partly generated by the constructive and destructive inter- by the rise time, which is the time taken for each point of the

fault to reach the final dislocation D (the static displacement).ference of waves, especially NF waves. It is a well-known fact
that a large earthquake generates more low frequencies than For a point source, this rise time governs the width of the far-

field P and S waves (see Fig. 6, for N=1), whose forms area small earthquake. Note also that we focus on the effect of

the finiteness in space introduced by the length and width of similar to Dirac pulses as mentioned above. Fig. 6 shows the
effect of this rise time during the summation process.the fault, but a similar effect also exists in time, introduced
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