1,259 research outputs found
Recommended from our members
Lifetime Risk of Lower-Extremity Peripheral Artery Disease Defined by Ankle-Brachial Index in the United States.
Background There are no available lifetime risk estimates of lower-extremity peripheral artery disease (PAD). Methods and Results Using data from 6 US community-based cohorts and the vital statistics, we estimated the prevalence and incidence of PAD, defined as an ankle-brachial index < 0.90, at each year of age from birth to 80 years for white, black, and Hispanic men and women. Then, we used Markov Monte Carlo simulations in a simulated cohort of 100 000 individuals to estimate lifetime risk of PAD. On the basis of odds ratios of PAD for traditional atherosclerotic risk factors (eg, diabetes mellitus and smoking), we developed a calculator providing residual lifetime risk of PAD. In an 80-year horizon, lifetime risks of PAD were 30.0% in black men and 27.6% in black women, but ≈19% in white men and women and ≈22% in Hispanic men and women. From another perspective, 9% of blacks were estimated to develop PAD by 60 years of age, while the same proportion was seen at ≈70 years for whites and Hispanics. The residual lifetime risk within the same race/ethnicity varied by 3.5- to 5-fold according to risk factors (eg, residual lifetime risk in 45-year-old black men was 19.9% when current smoking, diabetes mellitus, and history of cardiovascular disease were absent versus 70.4% when all were present). Conclusions In the United States, ≈30% of blacks are estimated to develop PAD during their lifetime, whereas the corresponding estimate is ≈20% for whites and Hispanics. The residual lifetime risk within the same race/ethnicity substantially varies according to traditional risk factors
Draft Genome Sequences of 1,183 Salmonella Strains from the 100K Pathogen Genome Project.
Salmonella is a common food-associated bacterium that has substantial impact on worldwide human health and the global economy. This is the public release of 1,183 Salmonella draft genome sequences as part of the 100K Pathogen Genome Project. These isolates represent global genomic diversity in the Salmonella genus
Physical Activity and Sedentary Behavior of Cancer Survivors and Non-Cancer Individuals: Results from a National Survey
Increasing physical activity and decreasing sedentary behavior are associated with a higher quality of life and lower mortality rates for cancer survivors, a growing population group. Studies detailing the behavior of cancer survivors are limited. Therefore, we investigated physical activity and sedentary behavior of cancer survivors using data from the National Health and Nutrition Examination Survey (NHANES) 2007–2010. Participants were those who provided physical activity and sedentary behavior data. Those who were pregnant,old, or10,472 non-cancer participants. After adjustment for age, race, gender, education status, body mass index, and smoking status, cancer survivors (n = 10,472) reported significantly longer duration of sedentary behavior (OR = 1.42, 95% CI (1.12, 1.80) for 8 or more hours, p-value for trend = 0.09), compared to non-cancer participants (n = 741). They also reported non-significant increases in maximum intensity, duration, frequency, and energy expenditure, whereas they reported significant increases in moderate intensity (OR = 1.26, 95% CI (1.01, 1.57)), moderate frequency (1–4 times/week) (OR = 1.32, 95% CI (1.00, 1.74)), and moderate energy expenditure (4018.5–7623.5 kcal) (OR = 1.30, 95% CI (1.00, 1.71)) of physical activity, compared to non-cancer participants. These patterns are similar for breast and prostate cancer survivors, with prostate cancer survivors more likely to engage in physical activity for more than one hour per day (OR = 1.98, 95% CI (1.05, 3.71)). Our findings suggest that cancer survivors tend to have more physical activity, but they are also more likely to engage in sedentary behavior
Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD) is a global health problem, and current therapy for COPD is poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. Imbalance of oxidant/antioxidant balance caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g. NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervening COPD
Experimental and theoretical cross sections for molecular-frame electron-impact excitation-ionization of D 2
We present both experimental and theoretical results for the dissociative ionization of D2 molecules induced by electron impact. Cross sections are determined in the molecular frame and are fully differential in the energies and emission angles of the di
Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron
Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers
Experimental and Theoretical Cross Sections for Molecular-frame Electron-impact Excitation-ionization of D₂
We present both experimental and theoretical results for the dissociative ionization of D2 molecules induced by electron impact. Cross sections are determined in the molecular frame and are fully differential in the energies and emission angles of the dissociation fragments. Transitions are considered from the X1Σg+ electronic ground state of D2 to the 2sσg, 2pπu and 2pσu excited states of D2+. The experimental results are compared to calculations performed within the molecular four-body distorted-wave framework to describe the multicenter nature of the scattering process. The cross sections reveal a dramatic dependence on both the alignment of the internuclear axis with respect to the direction of the projectile momentum and on the symmetry of the excited dissociating state which is energetically resolved
Recommended from our members
Understanding the impacts of inorganic species in woody biomass for preprocessing and pyrolysis–A review
Woody biomass represents an abundant resource for sustainable biofuels, biochemicals, and bioproducts. Technologies for converting woody biomass have been established for decades, and research consistently highlights the critical role of inorganic species and ash plays in feedstock handling and conversion processes, including equipment plugging, corrosion, and catalyst deactivation. A thorough understanding of the variability, transport behavior, and downstream impact of inorganic species in woody biomass is essential for defining feedstock quality specifications and developing effective management strategies for conversion processes. This review compiles critical information in five main sections: 1) inorganic species concentration in woody biomass, based on anatomical fractions and their sources of variability; 2) technique features for quantifying inorganic elemental chemical analysis; 3) impacts of inorganic species on biomass preprocessing; 4) impacts of inorganic species on pyrolysis, and 5) mitigation strategies. Additionally, this review explores future challenges and opportunities in addressing the impacts of inorganic species on biomass quality. These insights aim to support the sustainable development of the biomass-to-bioenergy pipeline and ensure high-quality lignocellulosic feedstocks for efficient downstream conversions. The findings offer valuable guidance to policy makers, industry stakeholders, and researchers in developing effective strategies for managing inorganic species in woody biomass and fostering the sustainable processes for lignocellulosic biorefineries
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
- …
