96 research outputs found

    Magnetic Dirac semimetal state of (Mn,Ge)Bi2_2Te4_4

    Full text link
    For quantum electronics, the possibility to finely tune the properties of magnetic topological insulators (TIs) is a key issue. We studied solid solutions between two isostructural Z2_2 TIs, magnetic MnBi2_2Te4_4 and nonmagnetic GeBi2_2Te4_4, with Z2_2 invariants of 1;000 and 1;001, respectively. For high-quality, large mixed crystals of Gex_xMn1x_{1-x}Bi2_2Te4_4, we observed linear x-dependent magnetic properties, composition-independent pairwise exchange interactions along with an easy magnetization axis. The bulk band gap gradually decreases to zero for xx from 0 to 0.4, before reopening for x>0.6x>0.6, evidencing topological phase transitions (TPTs) between topologically nontrivial phases and the semimetal state. The TPTs are driven purely by the variation of orbital contributions. By tracing the x-dependent 6p6p contribution to the states near the fundamental gap, the effective spin-orbit coupling variation is extracted. As xx varies, the maximum of this contribution switches from the valence to the conduction band, thereby driving two TPTs. The gapless state observed at x=0.42x=0.42 closely resembles a Dirac semimetal above the Neel temperature and shows a magnetic gap below, which is clearly visible in raw photoemission data. The observed behavior of the Gex_xMn1x_{1-x}Bi2_2Te4_4 system thereby demonstrates an ability to precisely control topological and magnetic properties of TIs

    Semiconducting Electronic Structure of the Ferromagnetic Spinel HgCr2Se4\mathbf{Hg}\mathbf{Cr}_2\mathbf{Se}_4 Revealed by Soft-X-Ray Angle-Resolved Photoemission Spectroscopy

    Full text link
    We study the electronic structure of the ferromagnetic spinel HgCr2Se4\mathrm{Hg}\mathrm{Cr}_2\mathrm{Se}_4 by soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) and first-principles calculations. While a theoretical study has predicted that this material is a magnetic Weyl semimetal, SX-ARPES measurements give direct evidence for a semiconducting state in the ferromagnetic phase. Band calculations based on the density functional theory with hybrid functionals reproduce the experimentally determined band gap value, and the calculated band dispersion matches well with ARPES experiments. We conclude that the theoretical prediction of a Weyl semimetal state in HgCr2Se4\mathrm{Hg}\mathrm{Cr}_2\mathrm{Se}_4 underestimates the band gap, and this material is a ferromagnetic semiconductor.Comment: 6+13 pages, 4+13 figure

    Landscape science: a Russian geographical tradition

    Get PDF
    The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability

    Molecular Phylogeny Restores the Supra-Generic Subdivision of Homoscleromorph Sponges (Porifera, Homoscleromorpha)

    Get PDF
    Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA) and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium) and the other containing aspiculate species (genera Oscarella and Pseudocorticium), thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not.As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content and gene order

    The nonperturbative functional renormalization group and its applications

    Full text link
    The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultraviolet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilson's RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.Comment: v2) Review article, 93 pages + bibliography, 35 figure

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    “A Familiar Khlebnikov Specialist in Kiev.” For the 85th Jubilee of A.E. Parnis

    No full text
    The article is dedicated to the anniversary of Alexander E. Parnis, who is known as a foremost researcher of Velimir Khlebnikov’s works, Russian futurism and Russian literature of the early 20th century overall. The author of the article marks main landmarks of the creative biography of the scholar, evaluates his most significant works and shows their importance for modern history of Russian literature. The text includes some personal memoires by the author who has been on close friendly terms with A. Parnis for many years. The work of the scholar is not only an overcoming of the resisting material, which, thanks to his efforts, becomes а transformation of the hidden into the open, of the unknown into the knowable, but also, to a certain extent, an overcoming of himself. The main wish to the “hero of the day” is to complete his main work, i. e. the scientific biography of Velimir Khlebnikov, chapters from which are already beginning to reach the reader

    Improving Homology-Directed Repair in Genome Editing Experiments by Influencing the Cell Cycle

    No full text
    Genome editing is currently widely used in biomedical research; however, the use of this method in the clinic is still limited because of its low efficiency and possible side effects. Moreover, the correction of mutations that cause diseases in humans seems to be extremely important and promising. Numerous attempts to improve the efficiency of homology-directed repair-mediated correction of mutations in mammalian cells have focused on influencing the cell cycle. Homology-directed repair is known to occur only in the late S and G2 phases of the cell cycle, so researchers are looking for safe ways to enrich the cell culture with cells in these phases of the cell cycle. This review surveys the main approaches to influencing the cell cycle in genome editing experiments (predominantly using Cas9), for example, the use of cell cycle synchronizers, mitogens, substances that affect cyclin-dependent kinases, hypothermia, inhibition of p53, etc. Despite the fact that all these approaches have a reversible effect on the cell cycle, it is necessary to use them with caution, since cells during the arrest of the cell cycle can accumulate mutations, which can potentially lead to their malignant transformation
    corecore