368 research outputs found

    Significance Of ‘Karma Yoga’ In The Gita An Accomplishment Of Human Life

    Get PDF
    Karma yoga is an ancient principle of Indian Philosophy. Karma means action, yoga means the state. It suggests the way to live in the world without getting entangled in wrong and sinful action. One of the Hindu religious text Bhagavad-Gītā, Chapter three explain the teachings of Karma Yoga. Karma yoga is the performance of prescribed duties obligatory for everyone. In Karma Yoga, Lord Krishna explains how duty can be performed as abided by responsibility in different stages of life. Lord Krishna goes on to detail the reasons why these responsibilities are so important, the benefits of fulfilling them, the drawbacks of failing to do so, the paths that lead to bondage and the paths that lead to redemption, and so on. The Bhagavad-Gītā prescribes two things that are essentially required to practice Karma yoga: (1) the karma yogin should not have an attainment of the fruits of action and (2) He ought to perform his actions as they are suggested to him. It will also elaborate the concept of Niskamakarma, in this context Gītā says ‘Do your duty without aspiration of results.’ This paper will summarize the three important concepts of the Gita, viz. Karma yoga, Bhakti Yoga, and Jnana Yoga. Karma yoga leads to Jnana, Jnana leads to Bhakti. Bhakti leads to Salvation. Karma yoga is the foundation to the way of salvation (Mukti). Karma purifies the mind, helping growing Bhakti, which ultimately leads to Jnana. There cannot be Jnana without Karma yoga. Bhakti yoga and Jnana yoga also interlinked. Thus, the paper will try to analyze in a nutshell the importance of Karma yoga, and its significance to attain the highest aim of human life ‘Salvation’ (Mukti)

    Dynamic Economic Load Dispatch of Hydrothermal System

    Get PDF
    A Quasi Oppositional Gray Wolf Optimization (QOGWO) algorithm has been used in this work to decipher the economic load dispatch of hydrothermal system. Dynamic economic load dispatch problem involves scheduling of committed generators to meet the load demand with minimum fuel cost and several constraints which are dynamic in nature. It is basically short-term hydrothermal scheduling (STHS) problems through cascaded reservoirs. Instead of pseudo-random numbers quasi-opposite numbers are used to initialize population in the proposed QOGWO method so that the convergence rate of GWO increases. The viability of the projected approach is verified in three standard multi-chain cascaded hydrothermal systems with four interconnected hydro systems. The load and number of thermal units differ from one system to another. Water transportation delay between interconnected reservoirs, Valve Point Loading (VPL) have been considered in different combination in three cases. The technique put forth with established superior to many recent findings for the STHS problems with increased complexities

    Metallic Glasses: A Revolution in Material Science

    Get PDF
    Metallic glasses represent one kind of advanced material, very popular in recent decades. These materials are very adaptable like plastics for their manufacturability in very complex shapes. TPF (Thermoplastic forming) based processes seem very good method to process them. These materials can compete with plastics but have metallic properties. They behave as magnetic materials with less hysteresis loss and less eddy current loss making them suitable for transformer and MEMS (Micro-Electromechanical System) applications. These materials exhibit good corrosion resistance, hardness and toughness. Based on the property and application, metallic glasses are good rivals to plastics, metals and ceramics. Chemical composition and kinetics of supercooling of these materials are the areas where young researchers can focus attention with a view to their improvement

    On the replacement of steel by NITINOL as coupling agent in automobile shaft

    Get PDF
    Automobile couplings generally fail due to excessive misalignment in shafts and torque overload which ultimately generates vibration in the assembly. These vibrations weaken the coupling structure and ultimately get transmitted to the shaft leading to fatigue failure. Additionally, the complexity in the design of standard coupling is related to lower durability. In this system, when the radial space is larger it trigger a bulkier transmission. Shape memory alloy such as NITINOL is a special class of smart material that possesses super-elasticity which means it can retain deformation of about 8%. This material has a high degree of strength, greater elastic and shear modulus than existing coupling materials such as steel, and have unique vibration damping features. Coupling made of NITINOL is simple in design and requires lesser space with minimal maintenance. They provide higher durability and are much reliable in operation over a wide range of temperatures. This paper aims to review the NITINOL material used in coupling technology industries and the parameters governing its shape memory effect. The knowledge gathered from this work enable to further extend the technological contribution of NiTi coupling at large scale production in the automobile sector with direct effect on longer life for the transmission system

    Current global scenario of sputtered deposited NiTi smart systems

    Get PDF
    This review provides details of the global scenario on the recent development and application of NiTi smart metal shape memory alloys (SMA). It mainly focuses on the dc/rf magnetron sputtering fabrication technology of nitinol thin film, which is a prominent structural material for many miniaturised systems. The sputtering parameters and their influence on the smart mechanism of the NiTi thin film has highlighted. The application of NiTi SMA at industrial scale from aviation industries to medical industries was discussed. The raised challenges within various applications were addressed, discussed and we have proposed possible way to overcome these limitations

    Influence of β-phase stability in elemental blended Ti-Mo and Ti-Mo-Zr alloys

    Get PDF
    This paper investigated the improvement of mechanical properties for one of the most used biomaterials, titanium-based alloy. To improve its mechanical properties, molybdenum was chosen to be added to Ti and Ti-Zr alloys through a mechanical blending process. After homogenization of Ti (12, 15) Mo and Ti (12, 15) Mo-6Zr, the compaction pressure and sintering temperature were varied to create pellets. Characterization has been done using scanning electron microscopy (SEM), X-ray diffraction (XRD), Vickers’s hardness, Archimedes test and ultrasonic method, and 3-point bending test. Micrograph of each pellet revealed the influence of Mo content that plays a prominent role in the variation of microstructure in the alloys Ti-Mo and Ti-Zr-Mo. The porosity and density were also influenced by changing the β-phase. EBSD analysis shows the increase in β-phase with the addition of Zr. The overall results indicated that the percentage of β-phase greatly affects the mechanical properties for the specimens

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens

    Get PDF
    This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections, of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and, thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore