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Chapter

Dynamic Economic Load Dispatch
of Hydrothermal System
Soudamini Behera, Ajit Kumar Barisal and Sasmita Behera

Abstract

A Quasi Oppositional Gray Wolf Optimization (QOGWO) algorithm has been
used in this work to decipher the economic load dispatch of hydrothermal system.
Dynamic economic load dispatch problem involves scheduling of committed genera-
tors to meet the load demand with minimum fuel cost and several constraints which
are dynamic in nature. It is basically short-term hydrothermal scheduling (STHS)
problems through cascaded reservoirs. Instead of pseudo-random numbers quasi-
opposite numbers are used to initialize population in the proposed QOGWO method
so that the convergence rate of GWO increases. The viability of the projected
approach is verified in three standard multi-chain cascaded hydrothermal systems
with four interconnected hydro systems. The load and number of thermal units differ
from one system to another. Water transportation delay between interconnected
reservoirs, Valve Point Loading (VPL) have been considered in different combination
in three cases. The technique put forth with established superior to many recent
findings for the STHS problems with increased complexities.

Keywords: hydrothermal scheduling, cascaded reservoir, gray wolf optimizer
(GWO), quasi oppositional-based learning, STH problem, VPL effect

1. Introduction

Over the last few years, we are in a shortage of energy and facing the
environmental pollution problem. So, now a day’s wise utilization of energy and the
operating cost minimization are major issues in the energy field. This signifies constraints
of hydrothermal systems must be modified and more robust technique is required to
provide more accurate scheduling results. The main aim of optimal HTS of an electrical
system is to optimize hydrothermal generations so that the load demand is fulfilled in a
scheduled time with accommodating several system constraints of the hydrothermal
system. It is very complicated than that of the thermal system due to nonlinearity.

The Stochastic methods like Genetic Algorithm (GA) [1], Quick Evolutionary
Programming (QEP) [2], Improved Particle Swarm Optimization (IPSO) [3], Teach-
ing Learning Based Optimization (TLBO) TLBO [4], Symbiotic Organisms Search
(SOS) [5], Intensified water cycle approach (IWCA) [6] have used for solving STH
problems. GWO [7] is a simple, fast and effective global optimization method. GWO
algorithm has been applied for the solution of non-convex and dynamic economic load
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dispatch problem (ELDP) of electric power system [8]. GWO has successfully solved
various ELD problems [9]. Many researchers have demonstrated that an opposite
candidate gives a more optimal solution than the candidate. Opposition Based Gray
Wolf Optimizer (OGWO) has been implemented in solving ELD problem [10] for
thermal power generators which increases the success rate and the convergence speed
of GWO.

This study applies Quasi Opposition based GWO (QOGWO) for solving HTS
problem of a hydrothermal system which prime objective is to allocate the hydro
generation between the multi-reservoir cascaded units with PDZ and thermal units
with VPL effect. The objective is to cut the total fuel cost of the thermal system with
accommodating several limitations of the hydrothermal system which makes it a non-
convex problem. To establish that the intended approach is better, a rigorous exercise
of the QOGWO for a hydrothermal system, with the gradual increase of complexity
and dimension, is considered in this study. In contrast to recent techniques, the out-
comes of the QOGWO technique exhibits superiority for operating cost as well as the
convergence characteristics to achieve the optimal result in all the cases tested here.

2. Formulation of STHS Problem

The STHS problem is to allocate the generation to the hydro and thermal units so
that the required load demand is achieved and it reduces the net cost without affecting
other constraints of Hydro and Thermal systems.

2.1 Hydro-thermal scheduling (HTS)

Since hydropower unit’s fuel cost are trivial when assessed with that of thermal
unit, the optimal HTS solution lessens the net coal cost of the thermal units with the
maximum utilization of the accessible hydro resource. In line with this, the optimal
HTS problem is formulated as the fuel cost FC as given in (1).

FC PTi,j

� �

¼
XNs

i¼1

XZ

j¼1

aiPT
2
i,j þ biPTi,j þ ci (1)

Considering the VPL effect as a sinusoidal variation the Eq. (1) modifies to (2).

FC PTi,j

� �

¼
XNs

i¼1

XZ

j¼1

aiPT
2
i,j þ biPTi,j þ ci þ di � sin ei � PTi, min � PTi,j

� �� ��
�

�
� (2)

The prime goal of HTS problem is to reduce the net fuel cost F of the thermal
plants. Then the objective function is given in (3).

Minimize F ¼
XZ

j¼1

XNs

i¼1

FC PTi,j

� �

(3)

where the symbols carry the meaning as defined earlier.
The following operational restrictions are to be satisfied.
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a. Load Demand constraints: It is defined as the balance of the net hydro and
thermal generation with the load inclusive of losses in each slot of scheduling j
as given in (4)

XNs

i¼1

PTi,j þ
XNh

i¼1

PHi,j ¼ PDj þ PLj,for j ¼ 1,2,… ,Z (4)

b. Generation constraints of Thermal Plant: The ith thermal generator must operate
within the lower and upper bound PTimin and PTimax respectively as shown in (5)

PTimin ≤PTij ≤PTimax (5)

c. Generation constraints of Hydro Plant: The ith hydro plant generator must operate
between its minimum and maximum bounds PHimin and PHimax respectively as
given in (6)

PHimin ≤PHi,j ≤PHimax (6)

d. Reservoir constraint: The ith reservoir volume capacity has to lie within the lowest
and highest margins as expressed in (7)

Vimin ≤V i,j ≤Vimax (7)

e. Water Discharge constraint: The flow in m3,qij, must be in between the lowest

and highest margins as given in (8)

f. Continuity Equation of Hydraulic Network: The storage capacity of the reservoir
must be in between the lower and higher volume margins as given in (9)

V i jþ1ð Þ ¼ Vij þ
XRu

u¼1

qu j�τð Þ þ su j�τð Þ

h i

� qi jþ1ð Þ � si jþ1ð Þ þ ri jþ1ð Þ for j ¼ 1,2… ,Z (8)

Where τ is the time gap for water transportation to the reservoir i from its
upstream reservoir u at time slot j and Ru is the combination of the upstream
hydraulic reservoirs before the hydro plant i

g. The power generation of the hydro plant PHij. It depends on water discharge rate
and reservoir storage capacity. It is expressed as in (10)

PHij ¼ c1iV
2
ij þ c2iq

2
ij þ c3i Vijqij

� �

þ c4iV ij þ c5iqij þ c6i (9)

Where, c1i to c6i are the constants.

3. GWO

GWO is a recent soft computing approach that mimics the social activities of gray
wolves. This algorithm depicts leadership, tracking, surrounding and attacking prey
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[7] activities of the species. In this algorithm a specific number of gray wolves in a
group travel through a multi-dimensional search space in search of prey. The position
of gray wolves are considered as different position variables and the distances of the
prey from the gray wolves determine the fitness value of the objective function. The
individual gray wolf adjusts its position and moves to the better position. The GWO
saves the best solutions obtained through the course of iterations. The goal of this
algorithm is to reach to the prey by the shortest possible route. The movement of each
individual is influenced by four processes. Their hunting mechanism is as follows:

a. The initial step of hunting is to track, chase and approach the prey.

b. The second step is to pursue, move around and harass the prey until it gives up.

c. The last step is to attack prey.

These steps are shown in Figure 1 [7].
The GWO algorithm was anticipated by Mirjalili et al. [7]. Gray wolves are related

to the Canidae family and are zenith predator. A pack approximately consists of a
group of 5to12 wolves. Their society is divided on the basis of hierarchy. The leader is
a couple called the ‘Alphas’. They take all the decisions for the pack and these deci-
sions are then communicated to the pack. All the members of the pack respect the
leader with keeping their tails down. The alpha is the best member who can manage
the pack in a better way. The second level in this hierarchy is the ‘Beta’ wolves. It is an
assistant wolf next to alpha after the current wolf gone. It assists alpha and keeps
discipline in the pack. The third level in this hierarchy is the ‘Delta’wolves. The lowest
ranked gray wolf is ‘Omega’. They are the scapegoat or the babysitters. Amidst all the
social hierarchy, there is an exciting social activity of the gray wolf is group hunting
(optimization).

Figure 1.
Hunting steps of Gray Wolf: (A) chasing, approaching and tracking prey (B–D) pursuing, harassing, and
encircling (E) Stationary situation and attacking [7].
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The encircling behavior of gray wolves may be modeled mathematically as per
following Eqs. (11) and (12).

D
!

¼ C
!

:X
!

p tð Þ � X
!

tð Þ
�
�
�

�
�
� (10)

X
!

tþ 1ð Þ ¼ X
!

p tð Þ � A
!

:D
!

(11)

Where X
!

p and X
�!

are the respective vectors corresponding to the position of the
prey and the gray wolf, and t designates the present iteration.

The coefficient vectors A
!
and C

!
can befound out as given in (13) and (14).

A
!
¼ 2a

!
: r
!
1 � a

!
(12)

C
!
¼ 2: r

!
2 (13)

Where r!1 and r
!
2 vectors are randomly chosen in the range [0, 1], the values of a

!

are gradually varied from 2 to 0 with the increase of iteration so as to put emphasis on
exploration and exploitation, respectively.

All the wolves of the pack keep updating their locations as per the location of the
senior wolves in the pack. Moreover, the location of the prey would be a random place
encircled by the alpha, beta and delta during their search because they are more
experienced in hunting. The following Eqs. (15)–(17) are proposed to revise the
position of all wolves as per the locations obtained so far by the best candidates as the
alpha, beta and delta.

D
!

α ¼ C
!

1:X
!

α � X
!

�
�
�

�
�
�,D
!

β ¼ C
!

2:X
!

β � X
!

�
�
�

�
�
�, D
�!

δ ¼ C
!

3:X
!

δ � X
!

�
�
�

�
�
� (14)

X
!

1 ¼ X
!

α � A
!

1: D
!

α

� �

,X
!

2 ¼ X
!

β � A
!

2: D
!

β

� �

, X
!

3 ¼ X
!

δ � A
!

3: D
!

δ

� �

(15)

X
!

tþ 1ð Þ ¼
X
!

1 þ X
!

2 þ X
!

3

3
(16)

Diverging and converging towards the prey in order to search and attack the prey
is what the gray wolves follow. In the mathematical modeling of divergence, we use
the value of Aj j > 1 or Aj j < 1 for the searching wolf to deviate from the prey to
emphasize exploration.

At the beginning of search process, a pack of gray wolves is randomly initialized in
the GWO algorithm. Each wolf in the searching place updates its gap from the prey.
Finally, the algorithm ends the optimization when termination limit is attained.

4. Quasi opposition based learning

Opposition Based Learning considers both the current and its opposite population
simultaneously for getting the best candidate solution. The quasi-opposite population

QOP x
q0
1 , x

q0
2 , ::… … x

q0
i , ::… x

q0
d

� �

in D dimensional region differs from the opposite

population as it is the population between the Centrec of the search region and the
opposite point x0i , expressed as in (18).

5

Dynamic Economic Load Dispatch of Hydrothermal System
DOI: http://dx.doi.org/10.5772/intechopen.108052



x
q0
i ¼ rand

ai þ bi
2

, ai þ bi � xi

� 	

¼ rand ci, x
0
i

� �

; i ¼ 1,2,:… d (17)

Where, x
q0
i is an arbitrary number between ci and x0i .

4.1 QOGWO algorithm for hydrothermal scheduling

The flowchart of the QOGWO to clarify the HTS problem is given in Figure 2 and
the steps are described as follows:

Step 1: Specify the system parameters, the highest and lowest limits of each
variable such as Popmax , qmin , qmax , Ns, Nh, Z, B-coefficient matrix, PD, PTmin ,
PTmax , PHmin , PHmax

, Vmin , V max , jr, Cost coefficients and itermax .
Step-2: Initialize randomly the search agents (Gray wolves) among the population
and those agents are possible solutions who satisfy the specified constraints.
Step-3: Compute the trial vector (current search agents) Q i,j,k ¼ P1 P2::…PPOPmax½ �

of the population. The random search agent matrix (Pk) is as in (19).

Pk ¼

q11 q12 … … q1,Nh

q21 q22 … … q2,Nh

… … … … :

… … qij … qi,Nh

qZ,1 … qz,j … qZ,Nh

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(18)

Step 4: The discharge rate qi,d of all the reservoirs for all the slots is taken at

random within the bounds and repeatedly adjusted after the check to satisfy the
first and last reservoir storage volume which is calculated using (20).

qi,d ¼ Vi,1 � Vi,25 �
XZ

j�1

j 6¼d

qi,j þ
XZ

j�1

ri,j þ
XRu

u¼1

XZ

j¼1

qu j�τð Þ (19)

Step 5: The volume of each reservoir is calculated by the Eq. (9), and then the
hydro generation is scheduled over 24 slots by the Eq. (10).
Step 6: Calculate the thermal power at jth slot using load balance Eq. (4). To satisfy
the equation PT d, jð Þ is taken at random and adjusted using Eq. (21) until it does
not defy the limits.

BddPT
2 d, jð Þ þ 2

XNhþNs�1

i¼1

Bd,i:PT i, jð Þ � 1

 !

PT d, jð Þ

þ PD jð Þ þ
XNhþNs�1

i¼1

XNhþNs�1

k¼1

PT i, jð ÞBi,kPT k, jð Þ �
XNh

i¼1

PH i, jð Þ �
XNs

i¼1

i 6¼d

PT i, jð Þ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼ 0

(20)
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Step 7: The fitness of the solution is evaluated by Eq. (3).
Step 8: Remember the best three search agents Xα, Xβ and Xδ (gray wolves) from
the population.

Figure 2.
Flow chart of QOGWO method.
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Step 9: Revise the values of a, A and C as per Eqs. (13) and (14).
Step 10: According to the positions of best three search agent Xα, Xβ and Xδ (gray
wolves) all search agents updated their current position by Eq. (17). The violation
of constraint is formulated as a penalty added in the fitness function.
Step 11: If the water discharge, the volume of the reservoir and power generations
limits are lower than the lowest limit it is assigned the lowest value and if their
value exceeds the highest limit, it is assigned the highest value.
Step 12: Select a fresh parameter “jumping rate” ( Jr) within the range [0, 1].
If rand< Jr, Quasi Opposite set of agents (wolves) can be shaped as below.

If rand< Jr:

for k ¼ 1 : Popmax

for i ¼ 1 : Z

for j ¼ 1 : Nh (21)

QOS : , : , kð Þ ¼ q i, jð Þ ¼ rand c jð Þ, x0 jð Þð Þ;

end

end

end

Step 13: Go to Step 2 until the predefined highest iteration number is reached.

5. Result discussion

The projected QOGWO has been used to find the solution of a hydrothermal test
system. It has been simulated using MATLAB software. As HTS is a real time problem
so, it is necessary that each run of the program should reach close to optimum
solution. 20 independent runs are executed to get the optimum solutions for all the
algorithms considered here.

5.1 Test system-1

Here the test system-1 is similar to that in [1] but the supplementary data for VPL
effect and PDZ of turbines are taken from [2]. Then the fuel cost of the corresponding
thermal unit with VPL is given in (22)

FC PTi,j

� �

¼
XNs

i¼1

XZ

j¼1

0:002PT2
i,j þ 19:2PTi,j þ 5000

þ 700� sin 0:085� PTi, min � PTi,j

� �� ��
�

�
� (22)

The respective minimum and maximum thermal generations correspond to 500
and 2500 MW. The water loss in the spillway and the energy loss in catering the load
from the hydro plant are ignored. The respective lowest and highest hydro generation
correspond to 0 and 500 MW.

Three cases of the test system-1 such as Case 1 (HTS problem considering qua-
dratic cost function only), Case 2 (with PDZ) and Case 3 (with VPL and PDZ) are
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under study. The several controlling parameters like a, A, C, size of the pack and
maximum iteration number have been tried in this algorithm. The values of a, A, C
are varied as per Eqs. (13) and (14), the size of the pack is 30 and the maximum
iterations took is 500.

5.1.1 Case 1: (HTS problems considering quadratic cost function only)

This is the simplest case where the PDZ of the hydro units and the VPL effect of
the steam power plant are neglected. The convergence characteristic in Figure 3 gives
an idea about the working of projected QOGWO approach. From Figure 3 it is clear
that the fuel cost is reduced in 50 numbers of iterations. The considered QOGWO
approach takes the computation time of 340.452 s to get the optimal HTS. To validate
the proposed QOGWO method, its simulation outcomes are compared in terms of
best, average and worst fuel cost over 20 independent runs with the results of other
approaches as shown in Table 1. The optimal results found by the projected algorithm

Algorithm Best fuel

cost ($)

Average fuel cost

($/day)

Worst fuel cost

($/day)

Variance Standard

deviation

CPU time

(sec)

GA [1] 932734.00 936969.00 939734.00 — — —

FEP [2] 930267.92 930897.44 931396.81 — — —

CEP [2] 930166.25 930373.23 930927.01 — — —

IFEP [2] 930129.82 930290.13 930881.92 — — 1033.20

IPSO [3] 922553.49 — — — — —

TLBO [4] 922373.39 922462.24 922873.81 — — —

SOS [5] 922332.17 922338.20 922482.90 — — 6.21

GWO 917203.73 917242.58 917288.03 0.0127 0.1128 353.224

QOGWO 916795.74 916812.67 916829.28 0.0096 0.0982 340.452

Table 1.
Comparison of optimal costs for the test system (case 1) after 20 independent runs.

Figure 3.
Convergence features of QOGWO in case-1 of the test system.
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are contrasted with other referred results shown in Table 1. It is clear that the
QOGWO founded superior result than the above-mentioned accessible techniques.
Though SOS has taken less time with a smaller number of iterations and population
size, it gives the minimum cost but its minimum is higher than that by GWO and
QOGWO.

5.1.2 Case 2: (with PDZ)

The PDZs of reservoirs of hydro power units have taken into account to ensure the
viability of the projected method. This case has not been dealt with by many
researchers but it is an important case for operation. The results of the proposed
method QOGWO are compared in terms of best, average and worst fuel cost over 20
independent runs with the results of other approaches as shown in Table 2. It is
observed that the QOGWO decreased the minimum, average and worst costs at less
execution time than those obtained by the other existing techniques when population
size and iterations are similar. The cost convergence feature of QOGWO algorithm is
revealed in Figure 4.

5.1.3 Case 3: (with VPL and PDZ)

Now the VPL of thermal power units and PDZ of hydro power units are included
to confirm the robustness of the projected algorithm. The best rates of hydro

Algorithm Best fuel cost

($/day)

Average fuel cost

($/day)

Worst fuel cost

($/day)

Variance Standard

deviation

CPU

time (s)

IPSO [3] 923443.17 — — — — —

TLBO [4] 923041.91 — — — — —

SOS [5] 922844.78 922867.24 923125.44 — — 9.53

GWO 923146.941 923187.45 923239.50 0.0129 0.1138 321.47

QOGWO 922736.233 922764.186 922810.58 0.0087 0.0932 310.941

Table 2.
Comparison of optimal costs in case-2 for the test system (case 2) after 20 independent runs.

Figure 4.
Convergence features of QOGWO in case-2 of the test system.
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discharges in slots got by the projected QOGWO are shown in Table 3. The conver-
gence plot attained by QOGWO is illustrated in Figure 5(a), respectively. In this case,
the hourly hydropower generations found by the QOGWO method are given in
Figure 5(b).

6. Conclusion

In this study, an effective GWO algorithm is united with quasi-oppositional based
learning (QOGWO) has been effectively implemented to solve a hydrothermal test
system with quadratic nonlinear cost functions. Progressive improvement of the
computational efficiency and better convergence characteristics are attained by quasi-
oppositional based learning introduced in the conventional GWO algorithm. It is
observed that the simulation time for the same number of iterations and the net cost
of generation got by the presented QOGWO for the day is lower than others in all the

Figure 5(a).
Convergence features of QOGWO in Case-3 of the test system.

Figure 5(b).
Hourly hydro power generation obtained by QOGWO in Case-3 of the system.
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Time Q1 Q2 Q3 Q4 PT (MW) Time Q1 Q2 Q3 Q4 PT (MW)

1 9.8564 8.9223 29.7264 13.0645 1017.4263 13 7.9960 8.2150 15.5132 13.4658 1793.6003

2 9.4124 8.5691 29.7217 13.0808 1054.3506 14 7.9872 8.9049 15.9866 13.5550 1756.6392

3 7.9999 6.9965 29.4505 13.1635 1054.1838 15 7.9941 9.5532 16.6901 13.6818 1682.7095

4 9.7886 9.1209 28.6931 13.1236 980.4384 16 6.2264 8.5121 17.5552 13.4527 1645.7608

5 7.9964 8.0000 17.1239 13.1762 943.5170 17 6.7799 8.3072 17.3486 15.5098 1682.7143

6 7.6541 7.0000 17.8867 13.0704 1054.3930 18 7.4033 8.0123 16.0462 15.9873 1682.7161

7 7.3230 6.8335 17.3717 13.1604 1276.1570 19 7.9990 9.0929 14.6481 18.0022 1756.5899

8 7.1700 6.6590 16.3193 13.0902 1608.7928 20 7.9991 9.7041 13.7816 18.0023 1793.5605

9 7.5358 8.0000 15.1289 13.0824 1830.5059 21 7.9973 9.1118 10.0840 18.0004 1756.6036

10 7.2597 8.0000 14.5053 13.1423 1904.4793 22 7.9455 6.9873 10.0585 18.3834 1645.7585

11 9.0105 8.4733 13.5320 13.1777 1793.5797 23 6.1837 6.9939 10.3479 18.9757 1387.0315

12 9.0073 8.4597 13.8286 13.4527 1867.5039 24 12.4744 13.5710 11.7416 22.8566 1054.3990

Table 3.
Hourly hydro discharges (� 104m3) of the test system in case-3.
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systems with the different level of complexities because of well-balanced exploration
and exploitation of the QOGWO algorithm. The maximum cases of hydrothermal
scheduling studied here in comparison to the existing works can be referred by
researchers in future. The consistent performance of QOGWO in the large dimension
of the problem with multiple constraints exposes its potential for application in other
engineering domains for constrained nonlinear non-convex engineering optimization.
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