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Abstract 

This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic 

form, and the augmentation of activity by surface conjugation of peptide ligands.  The review is 

subdivided into three main sections; of which the first describes the antimicrobial activity of 

inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial 

strains. The second section highlights the range of antimicrobial peptides and the drug resistance 

strategies employed by bacterial species to counter lethality. The final part discusses the role of 

antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that 

show resistance. General strategies for the preparation of antimicrobial peptides and their 

conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide 

nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial 

membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of 

targeting ligands, the nanomaterial becomes able to differentiate between bacterial and 

mammalian cells and thus, reduce side effects. Moreover, peptide conjugation to the surface of a 

nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and 

improvements in biocompatibility. 

 

Keywords: Nanomaterial, antimicrobial, conjugates, antimicrobial peptides, antibiotics 

 

 

 

 

 

 



4 

 

Contents 

1. Introduction 

2. NM as antimicrobial agents 

2.1 Mechanisms of action of NM 

              Impaired cell membrane function 

               Reactive oxygen species (ROS) production  

               Protein dysfunction and loss of enzyme activity 

               The release of toxic ions  

              Photocatalysis 

              2.2. NM against gram-positive and gram-negative bacteria 

                     Silver nanomaterials (Ag NM) 

                     Gold nanomaterials (Au NM)         

                      Titanium dioxide nanomaterials (TiO2 NM) 

                      Copper and copper oxide nanomaterials (Cu and CuO NM) 

                      Zinc oxide nanomaterials (ZnO NM) 

                      Mesoporous silica nanoparticles (MSNs) 

            2.3. NM against multidrug-resistant (MDR) bacterial strains 

2.3.1 Antibiotic conjugated NM against MDR 

2.4. NM against biofilms 

 

 

 

 



5 

 

3. Antimicrobial peptides and their antimicrobial potential   

               3.1. Antimicrobial action of peptides 

                  Membrane disruption 

                        Intracellular targets 

                       Modulation of immune responses 

           3.2. Resistance to AMP 

4. Inorganic NM as carriers for AMP 

         4.1. Inorganic NM for the delivery of loaded AMP  

         4.2. Inorganic NM for the delivery of the surface conjugated AMP 

4.3. Antimicrobial applications of AMP-conjugated inorganic NM           

AMP functionalized Au NM 

AMP functionalized Ag NM 

5. Conclusion and perspectives 

 

 

 

 

 

 

 

 

  

 



6 

 

1. Introduction 

Unnecessary and frequent use of antibiotics has caused a worrying and wide-ranging rise in 

bacterial resistance, which has led to serious and life-threatening restrictions in their clinical use 

(Shimanovich and Gedanken, 2016)(Rizzo et al., 2013). Microbes are adept at developing 

antibiotic resistance, and they do this by employing one or more evasive mechanisms. These are 

diverse and include (i) drug target alteration, (ii) enzymatic degradation of antibiotic compounds, 

(iii) efflux-pump of antibiotic molecules from the cell and (iv) biofilm formation (Ahmed, 

Raman and Veerappan, 2016)(Alekshun and Levy, 2007)(Salouti and Ahangari, 2014)(Huang et 

al., 2015; Fidler and Fidler, 2016). Resistance has become serious and is now a global concern.  

It will most likely be responsible for at least 10 million deaths by 2050 (O’Neill, 2014). 

According to the WHO, methicillin-resistant Staphylococcus Aureus (MRSA) infection is fatal 

and multidrug-resistant. Therefore, the development of innovative strategies for combating 

bacterial infection is of pressing need (Wang et al., 2010). The options under investigation for 

addressing this issue are numerous. Among other strategies, antimicrobial peptides (AMP) have 

attracted much interest due to favorable biocompatibility and a low probability of inducing 

bacterial resistance (Baltzer and Brown, 2011)(L. Peng et al., 2016).   

 

AMP works in efficient ways that are not overly specific.  For example, the formation of pores 

may be a general outcome following use with no specificity to bacterial type.  They exhibit a 

range of toxicities to bacteria, fungi, parasites, and viruses. They are capable of bypassing and 

disintegrating into bacterial cell surfaces of multidrug-resistant bacteria (Wang et al., 

2016)(Yount et al., 2006). Some AMP, such as Bactericin and Cap-18, are stable in the presence 

of proteases, elevated temperatures, and pH; properties found to be responsible for a long-term 
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bacterial resistance (Ebbensgaard et al., 2015) (Hassan et al., 2014). Nevertheless, several 

pathogens have developed resistance against antibiotics by modifying the cellular surface, 

expression of efflux pumps, and proteolytic degradation by microbial enzymes (Joo Fu and Otto, 

2016)(Andersson, Hughes and Kubicek-Sutherland, 2016). Therefore, AMP are used as 

commercially available antimicrobials with potential as alternatives to traditional cell wall 

inhibitors, nucleic acid inhibitors, plasma membrane inhibitors, and protein synthesis inhibitors 

(Peters, Shirtliff and Jabra-Rizk, 2010; Tillotson and Theriault, 2013). 

 

Different kinds of inorganic, mostly metal, nanomaterials (NM) have to date been used as 

antimicrobial agents. A significant benefit of metal and metal oxide NM is their various modes 

of action and lack of traditional therapeutic targets, which is why it is challenging for microbes 

to develop resistance against them (Karaman et al., 2017). According to The European 

Commission, NM are materials with at least one external dimension in the size range 1-100 nm. 

In this review, we are going to discuss inorganic nanomaterials with focus on metals and metal 

oxides, and their inherent antimicrobial activity. For instance, to date many different shapes of Au 

and TiO2 NM have been studied as antimicrobial agents (Bhattacharya and Mukherjee, 

2008)(Khan et al., 2011). Furthermore, other metal oxides, such as Copper (II) oxide (CuO), 

Magnesium oxide (MgO), and Zinc oxide (ZnO), exhibit affinity towards the bacterial surface 

and interfere with bacterial integrity. (Bhattacharya and Mukherjee, 2008)(Richards et al., 2000). 

The selective nature of NM in bacterial cells over mammalian cells is due to their differentiated 

perception for these two cells, e.g., from cell wall composition, ribosomes, and Ergosterol 

composition (Lemire, Harrison and Turner, 2013).  
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Although NM show promise for treatments against microbial infections, several essential 

requirements must be met before they can be used for clinical therapies (Casals et al., 2019). The 

first is to address the specific physicochemical properties of NM, such as composition, size, 

crystallinity, and morphology (Kumar et al., 2012) since they are strongly related to the activity of 

NM. Secondly, stable and non-agglomerating NM is engineered to monitor the toxicity. NM has 

a known physical and chemical impact on their toxicity, which can also be severely altered 

depending on their surroundings, for instance, because NM in biological fluids tend to 

agglomerate (Hajipour et al., 2012) (Sutariya et al., 2014). The last one is the biocompatibility of 

NM (Yen, Hsu and Tsai, 2009). The combination of these strategies with AMP allows the 

creation of unique designs that unleashes the promising potential to use the AMP's natural 

functionalities for microbial infections with increased effecacy. 

 

Namely, AMP-conjugated NM can address the disadvantages of free AMP, such as proteolytic 

degradation and low permeability across biological barriers (Rajchakit and Sarojini, 2017b). 

Synergistic behavior can be rendered by amplifying the AMP's anti-microbial strength with that 

of the NM carrier, not only through the conjugation with NM but also, the therapeutic efficacy of 

AMP can be increased. For instance, since AMP can further show selectivity for species, 

researchers have started using NM combined with AMP to carefully release NM from the body 

into the coat of arms where pathogens can be hyperthermally killed (Zharov et al., 2006). 

 

This review illustrates the chemistry, biology, interfacial science, and utilization of AMP-

conjugated NM, not only to hinder the growth but also to kill the bacteria based on their inherent 

action. We will provide the reader with an overview of the antimicrobial mechanisms of action 
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of inorganic NM, AMP, and their conjugates for antibacterial treatments. This review aims to 

summarise the latest promising findings and propose future approaches for building peptide 

conjugated NM for bacterial infection therapy. 

 

2. NM as antimicrobial agents 

2.1. Mechanisms of action of NM  

NM can exert a beneficial antimicrobial effect due to sub-micrometer scales of size and high 

surface-to-volume ratios. These properties enhance the contact area able to interact with 

pathogens. For this reason, NM exhibit increased biological and chemical activity and can be 

used to target different bacterial structures (Holban and Andronescu, 2016). Figure 1 illustrates 

the general mechanisms of antimicrobial activity exerted by different NM.  
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Fig.1 Different mechanisms of antibacterial action by NM. I) Metal ions released from their respective 

NM electrostatically bind and disturb the phospholipid bilayer of the bacterial membrane, causing 

membrane damage. II) Oxidative stress generated by the membrane disruption responsible for the bacteria 

protein damage. III) ROS is generated by NM, which is accountable for the IIIa) damage of the cell’s 

protein, and IIIb) DNA damage. Protein damage leads to loss of metabolic activity through IV) the 

disruption of the transmembrane electron transport chain. V) Protein damage interferes with fat, 

carbohydrate, protein, and energy metabolism. Adapted with the permission from (Wang, Hu and Shao, 

2017) Copyright © 2017 Dovepress. 

 

Impaired cell membrane function 

Bacterial membranes are negatively charged with a  high binding affinity for positively charged 

metal ions (Lemire, Harrison and Turner, 2013)(Palza, 2015). Several researchers have 

investigated the bacterial toxicity of Ag NM (Yamanaka, Hara and Kudo, 2005)(Sondi and 

Salopek-Sondi, 2004) and Au NM (Yaganza et al., 2004) against E. coli and S. aureus, and 

found that both induce damage to the plasma membrane. Another research by Marius et al. 

(Marius et al., 2011) revealed that Ag NM deposited on the bacterial cell wall surface form 

clusters, leading to bacterial death through cell lysis. Furthermore, Sondi and Salopek-Sondi 

(Sondi and Salopek-Sondi, 2004), as well as Prabhu and Poulose (Prabhu and Poulose, 2012) 

explained that the formation of pores in bacterial cell membranes was due to the NM deposition 

on the bacterial cell surface. Other evidence suggests that the antimicrobial activity of ion release 

from NM surfaces is connected with interruption of the electron transport chain of the membrane 

(Rainnie and Bragg, 1974)(Gordon et al., 2010). For example, micromolar concentrations of Ag
+ 

interact with NADH: ubiquinone oxidoreductase (NQR) enzyme, a component of the respiratory 

chain of bacteria, and inhibit energy-dependent Na
+
 transport resulting in energy depletion and 
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pathogen death (Travan et al., 2007). Lipid peroxidation is another mechanism of Cu
2+

 and Cd
2+

 

toxicity in bacteria (Hong et al., 2012) 

 

Reactive oxygen species (ROS) production  

NM induce reactive oxygen species (ROS) directly when they interact with aerobically grown 

bacteria, which ultimately leads to necrotic and apoptotic bacterial death (Acker and Coenye, 

2016)(Held and Instruments, 2015). The redox transition of the ROS is carried out using reaction 

mechanisms of Fenton in biologically based systems, including Si, Fe, Cu, Cr, V and Ni. (Huang, 

Wu and Aronstam, 2010)(Kirisits, 2015)(Ubini, 2003)(Tee et al., 2016). Hydrogen peroxide 

(H2O2), which is toxic to biological molecules during the Fenton reactions, oxidizes transition 

metal ions such as Fe
2+

 to produce (HO
-
) and highly relational hydroxyl radicles (OH). 

(Thannickal and Fanburg, 2000). 

 

When exposed to the acidic environment in lysosomes, metal NM produce ions (Ag
+
, Cd

2+
, 

Fe
2+/3+, 

Au
1+/3+), 

that can induce different chemical reactions from ROS species (Li et al., 

2010)(Pokhrel et al., 2009). Furthermore, NM can communicate directly with redox active 

proteins such as NADPH oxidase, and stimulate large scale production of ROS in immune cells, 

including macrophages and neutrophils (Manke, Wang and Rojanasakul, 2013). Many recent 

studies clarify the antimicrobial activity of metal NM through the production of ROS. Ag NM 

are well known for their ROS production through surface oxidation or release of Ag
+
 in 

biological medium (Ivask et al., 2010). Moreover, chitosan-coated iron oxide (Fe2O3) NM 

(IONM) also induced significant production of ROS and thus, exhibited bactericidal activity 

against E. coli and B. subtilis (Arakha et al., 2015). Significant intracellular ROS production by 

CuO NM in E. coli was attributed to the release of Cu cations (Ivask et al., 2010)(Meghana et 
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al., 2015). Vijayaraghavan et al. (Padmavathy and Vijayaraghavan, 2008) studied the formation 

of ROS in terms of superoxides (
.
O

-
2), OH

-
 and H2O2, when ZnO NM was in contact with 

microbial cells. Because of their negative charge, OH
- 

and 
.
O

-
2 cannot penetrate the bacterial 

membrane (Xie et al., 2011) and therefore stay in direct contact with the bacteria’s exterior 

surface. In contrast, H2O2 penetrates the bacterial cell wall and causes lipid, DNA, and protein 

destruction (Dutta et al., 2012). Interestingly, halogen adsorption on MgO NM surface induced 

higher antibacterial activity (Blecher, Nasir and Friedman, 2017). The rough surface of NM, the 

oxidative action of adsorbed halogens and strong electrostatic interaction with the negatively 

charged bacterial membrane is a major reason for their excellent antimicrobial activity (He et al., 

2016)(Chen et al., 2014). 

 

Protein dysfunction and loss of enzyme activity 

Several studies have shown that the FeS family of bacteria are susceptible to site-specific 

inactivation by toxic metals, including dihydroxy acid dehydratases (DHAD) and isopropyl-

malate isomerases (IPMIs) involved in branched-chain amino acid synthesizes (Xu and Imlay, 

2012)(Booth, Weljie and Turner, 2015). Moreover, the reduced fumarase A and 6-

phosphogluconate dehydratase activity are one of the most significant toxic effects of Cu, two 

enzymes that also depend upon Fe-S catalysts  (Macomber and Imlay, 2009). It was reported that 

Ag, Hg, Cd, and Zn (but not Mn, Co, Ni or Pb) might harm FeS clusters in vitro and in vivo, 

which contains dehydrates independently of the ROS with bacteriostatic effect. Proteins that 

repair FeS clusters, such as cysteine desulphurase (IscS) or the SufA scaffold protein FeS cluster, 

may restore inactive bacterial enzymes  (Xu and Imlay, 2012). In addition to the destruction of 

FeS clusters, metals are also able to use a route called the ionic simulation to inhibit the site's 
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enzyme. For example, Pb removes Zn from the δ aminolevulinic acid dehydratase (ALAD) 

active site, leading to enzymatic inhibition (Scinicariello et al., 2007) and antimicrobial toxicity 

(Ogunseitan, Yang and Ericson, 2000). Further, Ni can substitute Zn at the non-catalytic Zn site of 

fructose-1,6-bisphosphate aldolase (FbaA) in E. coli, resulting in loss of activity (Macomber, Elsey 

and Hausinger, 2011). 

 

Release of toxic ions  

The antimicrobial efficacy of NM is directly commensurate with the release of ions. Metal ions 

accumulate and pass through cell membranes and intercalate with proteins and nucleic acids 

inhibiting bacterial function (Slavin et al., 2017). For instance, Ag NM can be oxidised by O2 

and other cellular molecules leading to the release of Ag
+
 ions. Ag NM can penetrate the 

bacterial membrane and release Ag
+
 ions, which subsequently bind to amino acids (cysteine) 

affecting their functionality (Hu and Hong, 2017)(Sharma, Kwon and Chen, 2013)(Kanematsu 

and Barry, 2015). Yamanaka et al. (Yamanaka, Hara and Kudo, 2005) used two-dimensional 

electrophoresis to evaluate the influence of Ag
+
 ions on specific proteins in E. coli. Reduced 

expression of 30S ribosomal subunit, succinyl CoA synthetase (SCS), maltose transporter 

(MalK), and fructose bisphosphate aldolase were observed after E. coli incubation with 900 ppb 

Ag
+
 ions compared to the untreated group. The authors sulfurized Ag NM to Ag2S NM and 

found out that sulfidation reduced the release of Ag
+
 ions from Ag NM and reduced their toxicity 

towards E. coli. Similarly, bacterial toxicity of ZnO NM is associated with the dissolution of 

Zn
2+ 

ions within the microbes (Chang et al., 2012)(Ivask et al., 2012). It has been reported that 

the Zn
2+

 ions are toxic towards S. cerevisiae (Kasemets et al., 2009). Similarly, Cu NM exhibited 

bacterial toxicity in the same manner (Zhang, 2016). 
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Photocatalysis 

Photocatalysis is the excitation of NM, such as Fe2O3, WO3, ZnO, and TiO2, by UV irradiation to 

generate ROS that first damage the lipopolysaccharide layer of the bacterial cell wall, followed 

by the inner peptidoglycan layer. Also, ROS induce peroxidation of lipids and proteins in the cell 

membrane, eventually resulting in organelles leaching from the plasma membrane (PM). TiO2 

has been shown to produce ROS under UV irradiation (Nowack, 2008). High photocatalytic-

mediated antimicrobial activity of TiO2 NM compared to ZnO NM under UV irradiation has been 

observed (Leung et al., 2016). Saito et al. (Saito et al., 1992) used TEM to study the effect of TiO2 

NM and observed disruption of PM of bacteria due to photocatalytic induced ROS. Carre et al. used 

proteomics data to conclude that TiO2 NM can not only down-regulate but also impair membrane 

proteins under UV irradiation (Carré et al., 2014).  Wu et al. studied the photocatalytic activity of 

PdO/TiO2 nanofibers against E. coli (Wu, Imlay and Shang, 2010). The authors reported changes 

in membrane permeability of E. coli, followed by DNA damage upon photocatalytic irradiation 

of PdO/ TiO2.  

 

2.2. NM against gram-positive and gram-negative bacteria 

Difference in composition of the cell wall of gram-positive and gram-negative bacteria affects 

the NM activity. It has been shown that gram-positive bacteria are more resistant to Ag NM than 

gram-negative bacteria. The thick peptidoglycan layer of gram-positive bacteria restricts the 

entry of most of the NM.  However, a study conducted by Ruparelia et al. (Ruparelia et al., 

2008) observed higher antimicrobial activity of CuO NM towards gram-positive B. subtilis, 

which may be due to strong affinity of CuO NM for amine and carboxyl groups. Antimicrobial 

activity of NM may be altered by other characteristics of the NM, like form, size, 



15 

 

coating/capping agent, microbial type, surface morphology, crystallinity, and pH (Agnihotri, 

Mukherji and Mukherji, 2014). In this section, will discuss the bacteriostatic and bactericidal role 

of various NM against gram-positive and gram-negative bacteria 

Silver nanomaterials (Ag NM) 

Ag has, for prolonged times, been used as an antimicrobial agent in medicine. It has several 

mechanisms of bactericidal/bacteriostatic effects. As a result, Ag NM are incorporated into 

various consumer goods such as surgical coatings, medical implants, food packaging, textiles, 

and cosmetics. A study, which investigated the size-dependent antimicrobial efficacy of Ag NM on 

gram-positive and gram-negative strains found a significant reduction in bacterial count when 

treated with 5 nm Ag NM on E. coli, B. subtilis, and S. aureus species for 90, 20 and 120 min, 

respectively. Similarly, the reduction of E. coli, B. subtilis, and S. aureus in 180 min was observed 

when treated with 7 and 10 nm Ag NM. The fastest bactericidal effect was observed for the smaller 

5 nm sized NM compared to 7 and 10 nm sized NM, which may be attributed to the higher surface-

area-to-volume ratio of smaller sized NM. The antimicrobial behavior was due to the same 

mechanisms as found by other researchers, such as membrane disruption and interferences. The 

negative charge of citrate-capped Ag NM tended to enable the electrostatic attraction reported in 

Figure 2 (Agnihotri, Mukherji and Mukherji, 2014).  



16 

 

 

 

Fig.2 FEG-TEM images of E. coli (a) untreated and (b) treated with Ag NM. The inset, as indicated by 

arrows, shows the presence of Ag NM. EDX spectrum (c) demonstrates the presence of.Ag The FEG-

SEM picture (d) confirms the Ag existence throughout the bacterial surface.  Reproduced with the 

permission from (Agnihotri, Mukherji and Mukherji, 2014) Copyright © 2014 The Royal Society of 

Chemistry. 
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Another study comparing the antimicrobial efficacy of different shapes of Ag NM (triangular, 

spherical, and rod) incubated with  E.coli of Ag concentrations 1, 12.5, 50, and 100 µg, concluded 

that triangular and nanosphere forms killed E.coli more efficiently than rods and ionic Ag (Pal, Tak 

and Song, 2015). Triangular Ag NM with an average width of 1 µm was found to produce a 

bacteriostatic effect, and inhibited E. coli 10
6
 colony forming units (CFUs). Considering the 

effect of Ag spheres, almost 12.5 µg Ag was required to reduce E. coli CFUs. In contrast, rod-

shaped and Ag
3+

 were unable to reduce E. coli viability even at 100 µg Ag concentration. This 

experiment further confirms the size and dose-dependent antimicrobial activity of Ag NM. 

Another similar in vitro study investigated Ag-spheres (Ag NM-sp) and Ag-rods (AgNR) on 

gram-positive and gram-negative bacteria using an optical density method. The study reported 

lower MIC values of Ag NM-sp (190,195,188,184,190 µg/ml) than AgNR (358,350,348,320,340 

µg/ml) for S. aureus, B. subtilis, P. aeruginosa, K. pneumonia, and E. coli, respectively. When 

studied against K. pneumonia, different concentrations of Ag NM-sp (184,197,207 µg/ml) and 

Ag NR (320,560, 720 µg/ml), that were selected based on their MIC values, were incubated with 

10
8
–10

9
 CFU/ml. Cellular viability was reduced to 71.0% and 42.63%, respectively, in the 

presence of 197 µg/ml of Ag NM-sp and 720 µg/ml of AgNR. The higher antimicrobial effect of 

Ag NM-sp over AgNR was attributed to its granular shape with the larger surface area and better 

distribution. 

 

Green synthesis of Ag NM, which are produced from biologically derived moieties, have shown to 

be more toxic than traditionally synthesized Ag NM (Siddiqi, Husen and Rao, 2018). One 

approach of Ag NM synthesis from Ricinus communisvar plant extract has been reported by Bora et 

al. (Ojha, Sett and Bora, 2017). Leave extracts acted as reducing and capping agents to generate 
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spherical Ag NM with a particle size of 30-40 nm. Antimicrobial activity against B. subtilis, S. 

aureus, S. zooepidemicus, E. coli, and E. aerogenes was reported as Ag NM having maximum 

inhibitory activity (MIC 10 µg/ml) against B. subtilis and S. aureus. Ag NM also showed 

antimicrobial activity against E. coli and S. zooepidemicus at 20 µg/ml concentration, while 

showing no cytotoxicity towards mouse fibroblast cells. Another approach observed high 

antibacterial effect of Ag NM synthesized from flower extract of Millettiapinnata against Proteus 

vulgaris, Staphylococcus aureus, Klebsiella pneumonia, E. coli, and Pseudomonas aeruginosa. 

The mode of action for the antimicrobial activity of Ag NM is distinct. First, positively charged 

Ag NM electrostatically adsorbed to the negative bacteria. Subsequently, Ag NM interacts with 

cysteines in protein, which eventually deactivates the protein and releases ROS (Rajakumar et al., 

2017). 

 

Gold nanomaterials (Au NM) 

The bactericidal activity of Au NM is related to their increased penetration into the bacterial cell 

wall, inducing vacuole formation as an indication of the elevated oxidative stress within the 

cytoplasm. For instance, Au NM with an average size of 25 ± 5 nm and surface charge of  -39 

mV were shown to reduce the viability of C. pseudotuberculosis at a concentration of 200 µg/ml 

(Mohamed et al., 2017). Mixed charged (+/-) Au NM were non-toxic to mammalian cells while 

exhibiting selectivity towards different bacterial strains. For example, a positively charged NM 

surface strongly interacts with gram-negative bacteria, whereas negative surface charge has a 

preference for gram-positive bacteria. Wang et al. studied the selective photothermal ablation of 

Salmonella over E. coli using oval-shaped Au NM conjugated with an anti-Salmonella antibody. 
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The authors observed almost 97% reduction of the bacterial viability under irradiation of λ670 nm for 

15 min, whereas E. coli bacteria survived under the same conditions (Wang et al., 2010). 

 

Titanium dioxide nanomaterials (TiO2 NM) 

The evaluation of ROS from the TiO2 NM surface under UV irradiation have shown to exhibit a linear 

correlation between the viability of E. coli and ROS concentration induced after UV irradiation (Li 

et al., 2012). Interactions between superoxide radicals with the unsaturated phosphate lipids in E. 

coli membrane, followed by its lipid peroxidation, was believed to interrupt the cell membrane 

integrity; ultimately reducing bacterial viability (Cai, Strømme and Welch, 2013)(Figure 3).  

 

 

 

Fig.3 Photocatalytic bactericidal activity of TiO2 based photocatalyst.  

 

However, TiO2NM induce adverse effects on human cells and tissue; hence, their use as 

antibacterial agents remains under limitation (Shah et al., 2017). Doping with Au, Ag, Pt, or Ag, 
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can narrow the bandgap of TiO2 NM and enhance its photocatalytic effect (Ahamed et al., 2017). 

Various reports have described the visible-light-induced antimicrobial activity of Fe, Cu, Ni, and 

Ag-doped TiO2NM against S. aureus and E.coli bacteria (Yadav et al., 2016)(Moongraksathum 

and Chen, 2018). 

 

Copper and copper oxide nanomaterials (Cu and CuO NM) 

In different composite forms of Cu and CuO NM, such as SiO2-Cu, Cu NM were proven to be 

efficient antimicrobial agents against different strains of bacteria (Muthukrishnan, 2015). Bacterial 

membrane destruction was found to be the primary source of bacterial death if subjected to such 

composites. In addition, CuO NM have recently been found to exert a pH-dependent anti-

bacterial effect against S. aureus. CuO NM interact with S. aureus at acidic pH (pH=5) whereby 

significant bactericidal activity was observed due to their lower agglomeration, which facilitates 

solubility dependent release of Cu
2+

 ions compared to pH 6 and 7. The released Cu
2+

 ions induced 

the production of ROS (Hsueh, Tsai and Lin, 2017)(Hajipour et al., 2012). 

 

Cu substituted with hydroxyapatite and fluorapatite (a bone mimetic material) was studied against 

gram-positive and gram-negative bacteria, as well as fungi to overcome possible infection of 

artificial bone implant material after surgery (Shanmugam and Gopal, 2014). In this study, Cu-

substituted hydroxyapatite displayed antimicrobial activity against gram-positive bacteria. In 

contrast, Cu-substituted fluorapatite showed antimicrobial activity not only against gram-positive 

and gram-negative bacteria but also fungi. A higher release of Cu from Cu-substituted-

fluorapatite is the main reason for this intense antimicrobial action. Compared with Ag NM, Cu 

NM are much more potent, and a promising therapeutic with higher colloidal stability and 
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resistance for surface oxidation; being critical factors for Cu NM as antimicrobial agent (Khurana 

and Chudasama, 2018).     

 

Zinc oxide nanomaterials (ZnO NM) 

ZnO displays vigorous antimicrobial activity due to its electrostatic interaction and internalization, 

the release of Zn
2+

 ions, and ROS formation. ZnO NM was proven effective against S. 

typhimurium, C. jejuni, Vibrio fischer, P. aeruginosa, P. alcaligenes, P. vulgaris, S. 

entericaserovar enteritidis, and E. coli (Xie et al., 2011)(Heinlaan et al., 2008)(Jones et al., 2008) 

(Nair et al., 2011)(Nair et al., 2011). The cytotoxic action of  ZnO NM against prokaryotic and 

eukaryotic cells via flow cytometry viability assays concluded that ZnO NM more effectively 

reduced S. aureus and E. coli strains. In contrast, ZnO NM were least effective on human CD4
+ 

T 

cells. Significant reduction of E. coli and S. aureus colonies were observed when >3.4 and 1 mM of 

13 nm ZnO was added to the agar plate. Dose and time-dependent inhibition of bactericidal activity 

was observed for ZnO NM, with entire colonies inhibition after 24 h of treatment. Alternatively, ZnO 

was tested against human T-lymphocytes, whereby no significant reduction of cell viability was 

observed. Overall, these findings display selective antimicrobial activity of ZnO/ZnO NM against 

prokaryotic cells without harming eukaryotic cells (Reddy et al., 2007).  

 

In a study comparing inhibition produced by ZnO, CuO, and Fe2O3 NM against gram-positive (S. 

aureus and B. subtilis) and gram-negative (P. aeruginosa and E. coli), ZnO NM was reported as 

more potent antibacterial agents in comparison to those of Fe2O3 and CuO NM (Yemmireddy and 

Hung, 2017). The antimicrobial mechanism of ZnO NM is believed to be related to particle size, 

which facilitates their bacterial penetration and generation of ROS, being more effective against 
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gram-positive than gram-negative bacteria (Seil and Webster, 2012) (Premanathan et al., 2011). 

For E. coli and S. aureus, the viability was reduced upon the incubation overnight with three nm-

sized ZnO NM at a concentration of 3.1 mg/ml and 1.5 mg/ml, respectively. Gram-positive 

bacteria were more impacted due to the structural differences of the cell wall composition. 

Smaller ZnO NM were able to interact and increase abrasiveness on the bacterial cell wall (Nair 

et al., 2009) (Yuan et al., 2018). 

ZnO NM photoconductivity was reported following UV illumination (390 nm, 1.8 W cm
-2

) ZnO-

rods and ZnO-plates reduced viability of E. coli by 18% (ZnO-rod) and 13% (ZnO-plate), whereas 

the viability of S. aureus was reduced by 22% when exposed to ZnO-rod and by 21% with ZnO-plate 

compared to control. ZnO NM illumination lead to the desorption of loosely bound oxygen 

molecules, thereby increasing its concentration on the ZnO surface, which ultimately generated 

oxygen species such as H2O2, O2
-
 and OH

-
. These ROS inactivate proteins, enzymes, and DNA 

(Ann et al., 2014). In a similar study by Zhou et al. (Zhou et al., 2008) a strong antibacterial rate of 

ZnO complex was obtained in S. aureus (99.45%) due to higher permeability of OH
-
 ions generated 

under UV light through the membrane of S. aureus compared to E. coli (95.65%), whose outer 

lipopolysaccharide (LPS) membrane restricts OH
-
 ions inside E. coli. For microbes, OH

-
ions 

interact with nuclear acids or respiratory classes of sulfhydryl and stop breathing for bacteria. 

The Zn-CuO-coated fabrics benefit from injection into Cu, giving different benefits in contrast to 

ZnO and CuO NM. For example, Zn-CuO NM display 10000 times more antibiotic activity 

within a short time. The potency of antimicrobial bandages, which were prepared by depositing 

Zn-CuO NM on cotton fabric using ultrasound irradiation to exert activity, was evaluated by using 

four microbial models (E. coli, S. aureus, MRSA, and MDR E. coli). Zn-CuO coated fabrics were 

incubated with 10
8
 CFUs for 30 min. 5 and 6 log reduction of E. coli and S. aureus were observed 
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after 10 min of treatment. In contrast, inhibition of only 1 and 2 orders of magnitude was detected 

for S. aureus after ZnO and CuO treatment and negligible effect was observed for E. coli. An 

elevated amount of OH
-
, O

-
2, and singlet oxygen formation by Zn-CuO composites resulted in 

higher bactericidal activity compared to ZnO and CuO NM (Malka et al., 2013).  

 

Mesoporous silica nanoparticles (MSNs) 

Silicon dioxide NM, especially so the type of mesoporous silica nanoparticles (MSNs), have 

attracted significant attention as an ideal antibacterial platform (Şen Karaman, Manner and 

Rosenholm, 2018) (Martínez-Carmona, Gun’ko and Vallet-Regí, 2018). Their size, matrix, and 

surface functionality can be adjusted to improve their interaction with bacteria and improve 

biofilm penetration (Camporotondia et al., 2013). Besides, MSNs may also interfere with bacterial 

cell-to-cell communication (quorum sensing) to avoid the development of biofilms. For just over a 

decade, the use of MSNs as effective drug delivery systems, particularly for anticancer therapies, 

has been thoroughly documented. The unique physical features of MSNs (e.g. high specific 

surface areas, large pore volumes and tunable pore sizes), two distinct (external and internal) 

surfaces that can be independently functionalized and further utilised for incorporating controlled 

drug release strategies, and the ability of MSNs to penetrate through biological barriers make 

them compelling candidates for the design of sophisticated antibacterial delivery systems 

(Gounani et al., 2019). Recent studies have reported the usefulness of MSNs for efficient 

antibiotic supply and the preparation of hybrid materials by incorporating MSNs with 

antibacterial enzymes (Li and Wang, 2013), peptides (Braun et al., 2016), metal ions/particles 

(Tian et al., 2014)
 
and polymers (surface modifiers) (Şen Karaman et al., 2016). Moreover, MSNs 

have been developed for dual antibiotic delivery. For instance, recently, Gounani et al. (Gounani et 
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al., 2019) performed the loading of two different antibiotics into MSNs to increase the therapeutic 

efficiency on both gram-positive and gram-negative bacteria. Thus, combinatory therapy with 

dual antibiotic-loaded MSNs could be provided with better treatment results for diseases 

requiring elevated levels of various drugs. 

 

In another study, hollow structured, well-defined mesoporous shells for sustained release of 

entrapped antimicrobial agents were prepared. Such hollow, mesoporous shells not only confers 

stability to the entrapped biological moieties but also acts as a reservoir. For example, amine-

functionalized hollow MSN (HMSN) have shown to act as an efficient carrier for antimicrobial 

agents. When loaded with antituberculosis drug isoniazid, HMSN could release isoniazid in a 

sustained manner (released 60% after 72 h). Isoniazid loaded HMSN exhibited potent 

antimicrobial activity against isoniazid resistant M. smegmatis stain mc
2
 651 (MIC 640 and 320 

ug/mL) and lowered the half inhibitory concentration (IC50) by 3.3- and 4.1-fold compared to 

free isoniazid (MIC 1280 ug/mL) after 24 and 72 h treatment, respectively. The enhanced 

bactericidal activity of isoniazid loaded HMSN may be attributed to increased intra-bacterial 

accumulation of isoniazid in a sustained manner from the well-defined mesoporous shell, 

conjointly with a strong interaction of amine moieties on the HMSN surface with bacteria (Hao 

et al., 2015). 

 

2.3 NM against multidrug-resistant (MDR) bacterial strains 

Multidrug resistance (MDR) developed by certain microorganisms against multiple drugs is a 

leading cause of hospital-acquired infections. It is being assessed that MDR causes 40-60% of 

nosocomial infections in the United States and the United Kingdom (Haque et al., 2018). Metal 
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oxides, metals, doped metals, and metal halides play a vital role in the selective and non-selective 

photothermal killing of MDR (Khlebtsov and Dykman, 2011)(Dizaj et al., 2014). Several metallic 

NM have superior antibacterial activity against MDR bacteria over traditional antibiotics (Blair et 

al., 2015). Bacteria can develop resistance towards metal NM through different mechanisms: 1) 

reduction of metal ions to non-toxic neutral oxidation, 2) increase in efflux of metal ions through 

chemiosmotic antiporters or P-type adenosine triphosphatases, and 3) production of flagellin, a 

bacterial adhesive protein from gram-negative strains, which aggregate metal NM on the bacterial 

surface and reduces antimicrobial efficacy (Nies, 2003)(Li, Nikaido and Williams, 1997)(Gupta et 

al., 1999)(Panáček et al., 2018). Recently, Graves et al. (Siddiqi, Husen and Rao, 2018) observed a 

genetic mutation in E.coli for 225 generations after regular exposure of Ag NM. To date, there have 

been no studies demonstrating the resistance of bacteria towards ROS species. However, most of the 

photosensitisers are water-insoluble and aggregate in water, which ultimately reduces their ROS 

generation capacity. To overcome this issue, a new hydrophobic photosensitiser based on 

amphiphilic block copolymer containing Chlorin e6 (Ce6) conjugated to Au NM surface, have 

shown effectiveness against Staphylococcus aureus (MRSA) (Wijesiri et al., 2017). Table 1 

summarises other metal and metal oxide designs that have been investigated against MDR bacteria.
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Table 1 Antimicrobial activity of metallic NM and metal oxide NM against multi-drug resistant bacteria 

Metal 

NMs 

Test MDR Bacteria Mechanism of antimicrobial activity Formulation Type References 

Ag 

 

MRSA 

VRE 

 

Investigation under process  

 

Ag containing dressing 

 

(Percival, Bowler and 

Dolman, 2007) 

 

 

MRSA 

 

 

 

Reduce glucose uptake and ATP synthesis, 

production of ROS, alter membrane 

permeability 

 

Ag supported silicate platelets 

 

 

(Su et al., 2011) 

 

Erythromycinresistant 

S. pyogenes 

Ampicillin resistant 

E. coli 

Multidrug-resistant P. 

aeruginosa 

 

 

Inhibit respiratory enzymes, binds to DNA and 

RNA and inhibit its replication, denature 30S 

ribosome subunit, alter membrane permeability 

 

           

 

                NM 

 

 

 

   (Lara et al., 2010) 
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Metal NMs Test MDR Bacteria Mechanism of antimicrobial 

activity 

Formulation Type References 

 

 

 

 

 

 

 

 

 

         Ag 

 

 

Erythromycin resistant Bacillus cereus  

 

Erythromycin resistant S. typhimurium 

 

Erythromycinresistant Enterococcus 

faecalis 

 

 

Cell membrane disruption  

 

 

Ag-Alginate (Ag-Alg) 

biohydrogel 

 

 

(Otari et al., 2013) 

 

 

Extended-spectrum beta-lactamases 

(ESBL) positive E. coli 

 

Teicoplanin resistant S. pneumoniae 

 

MRSA 

 

 

Generation and uptake of 

Ag+ inside the bacteria 

membrane 

 

 

AgNMs coated surgical 

suture 

 

 

(Thapa et al., 2017) 

 

 

MDR P. aeruginosa 

 

Thermal destruction of the 

membrane, ROS generation, 

Penetration of Ag
+
 inside the 

membrane 

 

AgNMs with blue light 

 

 

(El Din et al., 2016) 
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Metal NMs Test MDR Bacteria Mechanism of antimicrobial 

activity 

Formulation Type References 

Au 

 

MRSA 

 

Photothermal abilation and 

ROS production 

 

Au Nanorod (Au NR) 

 

 

(Kuo et al., 2009) 

 

 

MDR E. Coli 

MDR E. Cloacae 

MDR K. pneunoniae 

 

Membrane disruption, singlet 

oxygen generation, DNA 

degradation  

 

 

MB@GNMDEX-ConA 

 

 

(Khan et al., 2017) 

 

Cu MRSA Cu+ release that damage 

bacterial DNA 

Size-dependent antimicrobial 

activity of CuONMs 

NM (Kruk et al., 2015) 

 

ZnO 

 

MRSA 

 

Inhibition of ß-galactosidase 

(GAL) 

ZnO nanopyramids 

 

(Cha et al., 2015) 
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Metal NMs Test MDR Bacteria Mechanism of antimicrobial activity Formulation 

Type 

References 

ZnO 

 

Meticillin resistant S. agalactiae 

and S. aureus  

penetration and disorganization of cell 

membranes 

NM (Huang et al., 2008) 

CuO MRSA Cu
2+

 ions released from the NMs 

permeate through the bacterial 

membrane and disturb enzyme function 

NM (Ren et al., 2009) 

Fe3O4 

(Iron Oxide) 

 

MDR E. Coli 

MDR S. aureus  

 

Magnetic core under radiofrequency 

(RF) current alter bacterial membrane 

potential  

 

NM 

 

(Chaurasia et al., 2016) 

 

Al2O3 

 

MRSA, MSSA 

MSCoNS (methicillin-sensitive 

Coagulasenegative 

Staphylococcus) 

 

Damage of membrane, leakage of 

cellular content, and interacts with 

macromolecules  

NM (Ansari et al., 2013) 
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Metal NMs Test MDR Bacteria Mechanism of antimicrobial activity Formulation 

Type 

References 

Al2O3 

 

ESBL positive E. coli 

 

uptake of NMs inside the membrane and 

damage the biomolecules  

NM (Ansari et al., 2014) 

 

TiO2 

 

MRSA 

 

Interact and inactivate the bacterial 

surface proteins 

NM 

 

(S. Roy et al., 2010) 

 

UV light-induced ROS generation and 

physical  damage of the membrane 

Biphasic 

brookite-anatase 

TiO2NMs 

(Shah et al., 2008) 

 

NO (Nitric 

Oxide) 

MRSA Induce immune response NM (Han et al., 2009) 

   MB@GNPDEX-ConA: Methylene blue (MB) and Concanavalin -A (ConA) dextran capped Au NP (GNPDEX) 
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2.3.1 Antibiotic conjugated NM against MDR 

Metallic NM conjugated with antibiotics can exhibit synergistic antimicrobial activity. As stated 

above in section 2.3, metallic NM may effectively inhibit the viability of MDR bacteria. As a result, 

the potency of antibiotics increases, thereby reducing the side effects towards mammalian cells as 

well as antibacterial resistance (Allahverdiyev et al., 2011). Moreover, metallic NM are suitable 

carriers for the delivery of antibiotics. For example, tetracycline conjugated Ag NM increased 

antibacterial action of tetracycline, due to enhanced accumulation of the Ag
+
 around the bacterial 

cell membranes (Kumar, Curtis and Hoskins, 2018). Similarly, when Au NM was conjugated to a 

fluoroquinolone antibiotic, the antibacterial effects of fluoroquinolone was boosted lowering the 

MIC against MDR bacteria by 8–16 folds compared to free fluoroquinolone; which was due to 

their capacity of conjugates to behave as Tolc-AcrAB efflux pumps (Gupta et al., 2017). Recently, 

Katya et al. (Katva et al., 2018) pointed out the synergistic antimicrobial activity of Ag NM with 

gentamicin and chloramphenicol against MDR E. faecalis compared to antibiotics alone. Several 

studies involving the antibacterial activity of NM are listed in Table 2. 
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 Antibiotic conjugated 

Nanometals 

Test MDR strain Mechanism of antimicrobial action References 

Ampicillin-Ag NMs  

 

Ampicillin resistance E. coli 

Ampicillin resistance P. 

aeruginosa 

Blockage of the efflux pump 

 

(Brown et al., 2012) 

 

Clindamycin- Ag NMs 

 

MRSA 

 

Synergistic antimicrobial activity, inhibition 

of protein synthesis, an altercation in the 

respiratory chain 

(Rahim and Mohamed, 2015) 

 

Vancomycin- Ag NMs MRSA Synergistic antimicrobial activity (Saeb et al., 2014) 

MDR E. faecalis  

MDR S. epidermidis  

An altercation of bacterial  permeability (Esmaeillou et al., 

2017)(Panácek et al., 2016) 

Ofloxacin- Ag NMs  

MDR P. aeruginosa 

Inhibition of multidrug efflux pump activity (Ding et al., 2018) 

Tetracycline- Ag NMs 

 

Tetracycline resistance E. coli 

Tetracycline resistance S. aureus 

 

Cytotoxic effect of Ag
+
 

 

(Djafari et al., 2016) 

 

 

 

 

Table 2. Antibiotic conjugated nanoparticles against multi-drug resistant pathogens. 
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Antibiotic conjugated 

Nanometals 

Test MDR strain Mechanism of antimicrobial action References 

Tetracycline- Ag 

NMs 

Neomycin- Ag NMs 

MDR S. typhimurium Antibiotics facilitate binding of Ag NM to 

the bacteria membrane, increase in the 

concentration of Ag
+
 on bacteria membrane 

(McShan et al., 2015) 

 

Anti-S. aureus- Au 

NMs 

 

MRSA 

 

Antibiotics facilitate binding of Au NM to 

the bacteria membrane, photothermal 

destruction of bacteria cells 

(Millenbaugh et al., 2015) 

 

Levofloxacin, 

ceftriaxone, 

cefotaxime, and 

ciprofloxacin- Au 

NMs 

MDR E. coli 

MDR K. Pneumoniae 

MDR S. Aureus 

 

Disorganization and disruption of the 

bacterial membrane, 

loss of intracellular cytoplasmic content 

 

(Pradeepa et al., 2016) 

 

Cefotaxime-Au NMs Cefotaxime resistance E. coli, K. 

Pneumoniae 

Altercation in the bacterial cell wall, DNA 

damage 

 

(Shaikh et al., 2017) 

Meropenem-Au NMs 

 

Carbapenem resistance K. 

Pneumoniae, P. Mirabilis, A. 

Baumanii 

 

Alter osmatic balance and membrane 

integrity, damage of membrane, inhibition 

of protein synthesis 

 

(Shaker and Shaaban, 2017) 
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Antibiotic conjugated 

Nanometals 

Test MDR strain Mechanism of antimicrobial action References 

Kanamycin-Au NMs 

 

Kanamycin resistance S. Bovis, S. 

Epidermidis, E. Aerogenes 

P. Aeruginosa PA01 

MDR P. Aeruginosa 

Alter cell membrane integrity, lysis of cell 

wall, leakage of cellular content, inhibition 

of protein synthesis 

(Payne et al., 2016) 

 

Vancozycin-Au NMs vancomycin-resistant E. faecium 

(VRE 4), E. faecalis (VRE1) 

MRSA  

Pandrug-resistant A. baumannii 

(PDRAB) 

Bacteriostatic effect 

 

 

(Lai et al., 2015) 

 

Antibiotics-TiO2 MRSA 

 

Synergistic antimicrobial activity 

 

(S. Roy et al., 2010) 
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Antibiotic conjugated 

Nanometals 

Test MDR strain Mechanism of antimicrobial action References 

Vancomycin-Silica 

NMs 

 

MRSA 

 

MRSA sensitive near-infrared 

fluorescence (NIRF) nanoprobe for 

imaging and photothermal antibacterial 

therapy  

 

(Zhao et al., 2017) 
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2.4 NM against biofilms 

Biofilm is a bacterial cell community that adheres to metals, plastics, and human or animal tissues 

with the aid of highly hydrated extracellular polymeric substance (EPS) matrix (Wingender, Neu 

and Flemming, 1999)(Donlan, 2002). Secreted EPS is responsible for the maintenance of the three-

dimensional biofilm structure (Flemming and Wingender, 2010)(Markowska, Grudniak and 

Wolska, 2013). In a  biofilm environment, bacteria can propagate quickly with efficient protection 

and consequently create 100-1000 times more resistance of the cells towards the phagocytic 

process (Aaron et al., 2002)(Khan and Khan, 2016). Several studies have shown that biofilm-

grown microorganisms acquire resistance by a variety of mechanisms as listed below:  

A) EPS in biofilm acts as a physicochemical barrier and restricts the penetration of antimicrobial 

drugs (Billings et al., 2013)(Tseng et al., 2013). Additionally, an enzymatic substance in biofilm 

matrix hydrolyzes antimicrobial agents and reduces their activity. For example, β-lactamase 

present in  P. aeruginosa degrades β-lactam antibiotics (Mah and O’Toole, 2001)(Ciofu et al., 

2000)(Schooling and Beveridge, 2006). 

B) High-density bacterial growth within a biofilm promotes stress response, which induces the 

production of antimicrobial degrading enzymes (Schembri, Kjaergaard and Klemm, 2003). 

C) Increased DNA exchange between bacteria, which facilitates resistance-gene transmission 

(Qayyum et al., 2016). 

D) By quorum sensing, bacteria are capable of controlling gene transcription (Husain et al., 2016).  

E) The slow growth of bacteria in biofilms is another mechanism of resistance  (Mah and O’Toole, 

2001). 

NM are increasingly regarded as an alternative to standard antibiotics to eliminate biofilms or 

limit their development on biomedical devices (Iannitelli et al., 2011)(Lellouche et al., 2012). 
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Metal NM have a benefit over other frequently used antimicrobials because they do not 

differentiate between pathogenic and drug-resistant microbes with no specific target (Campoccia, 

Montanaro and Arciola, 2013)(Rai, Yadav and Gade, 2009). A diagrammatic representation of 

the antibiofilm mode of action of NM is shown in Figures 4 and 5. 

 

 

 

Fig. 4. Illustration of the inhibition of biofilm formation on surfaces coated by metal NM. Reproduced with 

permission (Qayyum et al., 2016) Copyright © 2016 RSC Publishing 
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Fig. 5 Biofilm disrupting the action of metal NM on the pre-formed biofilms. Reproduced with 

permission (Qayyum et al., 2016) Copyright © 2016 RSC Publishing 

 

Several approaches have been developed to eradicate biofilms, bactericidal, and bacteriostatic anti-

biofilm formation (Chen, Yu and Sun, 2013)(Dos Santos Ramos et al., 2018). For example, Ag 

NM have been widely used to prevent biofilm formation for various applications such as catheters, 

dental materials, medical devices, implants, and wound dressings (Wang, Shen and Haapasalo, 

2014)(Thiwawong, Onlaor and Tunhoo, 2013). Secinti et al. (Secinti et al., 2011) studied the anti-

biofilm properties of Ag
+
 ion coated titanium implants against S. aureus biofilm in 20 New Zealand 

rabbits; the result showed that no bacteria or biofilm layer formed on the coated implants, whereas 

biofilm was detected on uncoated implants. Additionally, no Ag
+
 accumulation was observed in 

host tissues (cornea, kidney, liver, and brain) after 28 days post-implantation. However, coating 
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medical devices with Ag
+
 ions or Ag NM sometimes have disappointing results, probably due to 

dose-dependent cytotoxicity (Huang et al., 2016). At optimal concentration, Ag NM is non-toxic 

with low bactericidal effects in mammalian cells (Ewald et al., 2006) (Burd et al., 2007). Han et 

al. (Han et al., 2014) studied the potential toxicity of 20 nm Ag NM in male and female mice in vivo, 

and found a negative impact of Ag NM on the reproduction of mice. Catheters coated with the Ag 

NM reported inducing thrombin formation and platelet activation, resulting in thrombosis (Stevens  

et al., 2009). Recently, Lee et al. (Ramasamy, Lee and Lee, 2017) studied the antibiofilm activity of 

Au NM linked cinnamaldehyde (CNMA-Au NM) and reported significant biofilm inhibition of 

MSSA, MRSA (gram-positive) as well as E.coli (gram-negative) compared to non-conjugated Au 

NM. The smaller size of Au NM and lipophilic nature of cinnamaldehyde facilitated attraction 

between CNMA-Au NM and bacterial membrane within biofilms, which can lead CNMA-Au NM 

to penetrate the biofilm architecture and inhibit biofilm formation by reducing metabolic activity 

and bacterial motility. In a subsequent study, the results demonstrated that cinnamaldehyde 

conjugated with silica (SiO2) coated Au NM (CNMA-Si-Au NM) led to disintegration and 

disorganization of the bacterial membrane, while preserving its integrity when treated with SiO2-

Au NM (silica coated-Au NM). The authors also reported that CNMA-SiO2-Au NM hydrolyzed in 

the acidic pH environment of the biofilm (Mohankandhasamy et al., 2017). 

 

3. Antimicrobial peptides and their antimicrobial potential   

Antimicrobial peptides (AMP) are components of the immune system of many organisms, such 

as bacteria, plants, fish, amphibians, insects, mammals, and even viruses; which not only protect 

them against infections but also display remarkable ability to tune the innate immune responses 

for microbial clearance (Papo and Shai, 2003)(Hancock and Sahl, 2006)(Malmsten, 
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2014)(Etayash et al., 2013). AMP are amphipathic arrangements of 12-50 amino acids, 

categorised into α-helical, β-sheet, extended, and mixed (α & β) with different secondary 

structure configurations (Figure 6) (Wang and Wang, 2004)(Wang, Li and Wang, 2009). 

 

 

 

Figure 6. Structural classification of AMP. (A) α-helical, (B) β-sheet, (C) extended, and (D) mixed (α & β) 

peptides. Reproduced with the permission from (Rajchakit and Sarojini, 2017a) Copyright © 2017 ACS 

Publication. 

 

AMP can be aromatic, non-cationic, and anionic peptides; the largest group belonging to cationic 

AMP (Marshall and Arenas, 2003). The α-helical class of cationic AMP has two separate 

characteristics: first, they have a polycationic sequence with a net positive charge (arginine 

and/or lysine) (Wang, Li and Wang, 2009)(Dennison et al., 2005). Positively charged residues 

are the primary driving force for AMP to target anionic membranes of gram-positive and gram–

negative bacteria. Negatively charged moieties (phospholipids, phosphatidylglycerol, cardiolipin, 

phosphatidylserine, and phosphatidylethanolamine) present on the membrane of gram-positive 

and gram–negative bacteria confer electronegativity to the bacterial surface, whereas eukaryotic 
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cells have a neutral net charge on their surface. Cationic AMP are, therefore, ideal for 

prokaryotic cell targeting. 

Additionally, cholesterol in mammalian cell membranes reduces the activity of AMP. AMP retain 

their antibacterial activity in prokaryotic cells, as cells have lower cholesterol levels.  In essence, 

negative surface charge and lack of cholesterol content of prokaryotic membrane attribute for the 

particular bactericidal activity of AMP (Ebenhan et al., 2014)(Zasloff, 2002). Second, the 

common characteristic of all AMP is hydrophobicity (alanine, leucine, isoleucine, valine, 

methionine, phenylalanine, tyrosine, and tryptophan), which is an essential requirement for 

membrane internalization and selective antimicrobial activity. It has been observed that excessive 

hydrophobicity is not only cytotoxic to mammalian cells, but also induces non-selective 

antimicrobial activity. For instance, the increased hydrophobicity of α helical AMP (V13KL) 

resulted in RBC hemolysis, which may have been due to the penetration of AMP deep inside the 

hydrophobic membrane of RBCs. Additionally, excessive hydrophobicity increased the 

dimerization of α-helical AMP (V13KL) and restricted AMP access to through the pathogen 

membrane, which decreased its antimicrobial activity (Chen et al., 2007). In addition to being 

polycationic and hydrophobic, AMP are amphiphilic, with segregated hydrophobic and hydrophilic 

residues, which allows them to be inserted into a pathogen plasma membrane (Cornup et al., 1994). 

 

3.1. Antimicrobial action of peptides 

AMP can affect bacteria by various mechanisms, which are divided into three major classes: 

membrane disruption, intracellular targeting, and activation of immune responses.  
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Membrane disruption  

Bacterial cell wall (CW) provides cellular integrity and stress-bearing ability, and as a result, 

maintains higher osmotic pressure and prevents cell lysis. Due to the bacterial CW composition 

compared to eukaryotic cells, these are a viable drug targeting choice. Among the potential 

targeting ligands are AMP, which display combinatory activity of cell membrane disorganization 

and inhibition of CW formation. AMP self-assembles on the prokaryotic membrane by 

hydrophobic/electrostatic interactions followed by cell membrane disintegration and 

disorganization.  Three different significant models explain the action of AMP: Barrel-Stave 

Model, toroidal pore, and carpet model.  

In the Barrel-Stave Model, parallel orientation of α-AMP on the PM is achieved through 

electrostatic interactions (Huang, 2009), leading to formation of transmembrane pores, which 

leads to cell death through the leakage of ribosome and mitochondrial organelles (Brogden, 

2005)(Yang et al., 2001)(Vedovato and Rispoli, 2007). For example, intestinal C-type lectin 

binds to the peptidoglycan carbohydrate of bacteria and kills it by forming membrane-

penetrating pores (Mukherjee et al., 2014)(Miki, Holsts and Hardt, 2012). 

 

According to the toroidal pore model, AMP accumulates at specific concentrations on the PM 

surface and bends it by increasing the distance between phospholipid moieties, which eventually 

results in a toroidal pore. Subsequently, phospholipids disturb with PM forming pores. In this 

model, unlike Barrel-Stave Model, the lipophilic and hydrophilic arrangement of PM bilayer is 

disorganised. AMP such as magainin-2 (Lee and Aguilar, 2016),  lacticin Q (Lee and Aguilar, 

2016), aurein 2.2 (Cheng et al., 2009), and melittin (Lee and Aguilar, 2016) can self-assemble 

around bacteria in toroidal pore fashion. 
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In the carpet model, AMP are oriented on the PM to disturb the bilayer in a detergent-like manner 

resulting in micelle formation, causing cell death. Human peptides such as cathelicidin LL-37 

(Shai, 2002), cecropin (Sitaram and Nagaraj, 1999), indolicidin (Rozek, Friedrich and Hancock, 

2000), and aurein 1.2 (Fernandez et al., 2012) can kill different bacteria by carpet mechanism 

(Gable et al., 2009).  

 

AMP often binds to various precursors, which are engaged in CW synthesis. uppP (bacA) genes of 

UppP enzyme, a membrane protein engaged in CW synthesis, is one example of such precursors. 

AMP such as Lactococcin-G and Enterocin-1071 interact with uppP (bacA) genes and inhibit CW 

synthesis (Kjos et al., 2014)(Belguesmia et al., 2017). Likewise, AMP (class I&II) bacteriocins 

bind to the lipid-II, essential for the synthesis of peptidoglycan in gram-positive and gram–negative 

bacteria, and inhibit the formation of CW through pores formation (Islam et al., 2012)(Yount and 

Yeaman, 2013). Some AMP can induce CW production of a lytic enzyme called N-

acetylmuramoyl-L-alanine amidase, responsible for CW wall disintegration and disorganization 

(Wilmes et al., 2014)(Bierbaum and Sahl, 1987). Pep5, nisin, Ɵ-defensin are examples of AMP 

that induce the activity of N-acetylmuramoyl-L-alanine amidase. 

 

Intracellular targets 

Recently, it has been reported that some AMP produce a bactericidal effect by cellular 

accumulation inside the PM targeting intracellular organelles. AMP induce activities such as 

inactivation of bacterial ribosomes, inhibition of protein synthesis, and interference in enzyme 

activity. For example, Bac71-35, oncocin, and apidaecins rich in proline residues that bind to the 70S 

ribosome and block its exit tunnel, eventually inhibits protein synthesis (Gagnon et al., 2016). 
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Buforin-II, a cationic peptide, accumulates and interacts with nucleic acids without interfering with 

the E. coli PM (Park, Kim and Kim, 1998). Interestingly, buforin-II displays anti-endotoxin 

activity, reducing endotoxin generated in gram–negative bacteria (Giacometti et al., 2002). 

Because of the inhibitory effect on endotoxin level, buforin-II prevents multiple organ failure and 

septic shock associated with the endotoxin-induced cytokines production. Microcins, antimicrobial 

peptides from gram-negative enterobacteria, can target intracellular and extracellular pathogens. 

For example, Microcin C (McC) translocates into sensitive cells to reach the target site via 

external membrane porins and internal ABC membrane transporters. In the cytoplasm, McC 

releases non-hydrolyzable aminoacyl adenylate, which obstructs a crucial aminoacyl-tRNA 

synthetase, enzyme for biosynthesis of protein (Fang and Guo, 2015)(Nocek et al., 

2012)(Rebuffat, 2012). Microcidin B17 is a peptide that enables the J25 (MccJ25) micron to 

cross the envelope of the cells, which inhibits DNA replication by inhibiting bacterial RNA 

polymerase (Mukhopadhyay et al., 2004) (Hassan et al., 2014). Haney et al. studied the 

antimicrobial effect of puroindoline derived Pur-B peptide against gram-positive and gram–

negative bacteria (Haney et al., 2013). They found that the positive charge of peptides leads to 

electrostatic attachment to negatively charged membranes. Pur-B peptide further penetrates PM 

and binds to nucleic acids, which ultimately inhibits the transcription and translation process. Gosh 

et al.  found that Indolicidin, an antimicrobial peptide from cathelicidin family, binds and wraps 

around duplex DNA, which leads to transcription inhibition (Ghosh et al., 2014). PR39 is another 

family of cathelicidin peptides with potent antimicrobial activity. This AMP obstructs bacterial 

nucleic acid replication (Bals and Wilson, 2003). This peptide has also been discovered to play a 

crucial role in innate immunity (Veldhuizen et al., 2014). Some studies have observed that PR-39 

inhibits the 20S proteasome in a non-competitive and reversible manner and blocks degradation 
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of NF-kB inhibitor. As a result, NF-kB dependent pro-inflammatory gene expression is 

suppressed in mouse myocardial infarction model and cell culture, thereby reducing 

inflammatory responses (Gao et al., 2000)(Anbanandam et al., 2008). Two bovine bactenecins, 

Bac5 and Bac7, exhibited potent bactericidal activity by obstructing the production of nucleic acid 

and proteins in E. coli and K. pneumonia (Skerlavaj, Romeo and Gennaro, 1990). Interestingly, 

some antimicrobial peptides produced from bacteria, such as bacteriocins, kill the pathogens 

through a receptor-mediated mechanism. 

 

Modulation of Immune Responses 

Apart from direct bactericidal activity, AMP generate different innate immune responses. They 

induce the modulation and expression of multiple cytokines and chemokines, as well as reduce 

inflammation by neutralizing cytokines released from macrophages and monocytes, promoting 

wound repair, modulating the responses of T-cells, and dendritic cells inducing angiogenesis 

(Diamond et al., 2009). Such responses further modulate the innate immunity protecting the host against 

microbial infection. For example, human defensins bind to the CCR6, a protein-coupled receptor, 

and raise the amount of dendritic and T cells at the site of microbial infection. A very low MIC (> 2 

µg/ml) of LL37 in vivo compared to in vitro (32 µg/ml) against E. coli, confirmed the indirect 

antimicrobial activity of AMP in vivo through modulating immune responses (Jenssen, Hamill and 

Hancock, 2006). AMP also recruit phagocytes cells at bacteria-infected sites and modulate 

immune responses against microbial infections. As-CATH2-6, out of six novel cathelicidins (As-

CATH1-6) from Chinese alligator (A. sinensis), showed antimicrobial and immunomodulatory 

activity in a bacteria-infected murine mouse model. As-CATH2-6 generate chemokines and 

recruit neutrophils, monocytes, and macrophages at the microbial infected sites; these 

intracellular granules invade and kill bacteria through phagocytosis (Chen et al., 2017). Likewise, 
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the immunomodulatory role of mammalian host defense peptides (HDP) in combating Leishmania 

infection has also been studied by Rafati et al. (Abdossamadi, Seyed and Rafati, 2016). Upon 

stimulation by pathogens at microbial infected sites, LL-37 promotes the expression of TNF-β and 

IFN-γ from macrophages, promoting pathogen phagocytosis through CD32 and CD64 expression 

(Soehnlein et al., 2008). All these activities promote immune hemostasis. Curiously, AMP stored 

at a sufficient concentration in immune cells, such as NK-cells, mast cells, neutrophils, monocytes, 

and macrophages, are the leading molecules that firstly deal with the pathogens and their expression 

at the infected site regulated by the vitamin-D receptor. Vitamin-D receptor promotes the 

production of vitamins 1,25 D3, which not only induces the expression of AMP but also enables the 

host to acknowledge and react to microbes by CD14 and TLR2 expression (Schauber et al., 

2007)(Liu et al., 2006). Even though the expression of AMP can kill microbes, continuous 

expression leads to autoimmune disorders, such as rosacea and psoriasis (Zhang and Gallo, 2016). 

 

3.2. Resistance to AMP 

Bacteria can develop various types of resistance mechanisms to AMP (Figure 7). Resistance can be 

expressed, for example, by surface remodeling (Hankins et al., 2012)(Malanovic and Lohner, 

2016), modulation of gene expression of AMP (Sperandio et al., 2008) biofilm formation (Yeaman 

and Yount, 2003), proteolytic degradation (Kooi and Sokol, 2009) efflux pumps (Shafer et al., 

1998)(Piddock, 2006)(Bengoechea and Skurnik, 2000), and by lipopolysaccharide (LPS) 

modification (Gunn, 2001). Recently, Cullen et al. (Cullen et al., 2015) reported a gene to induce 

dephosphorylation of LPS, which reduces the net negative charge on the bacterial membrane; as 

a result, the pathogen resists AMP by decreasing their electrostatic interaction with PM.  It is 

worth mentioning that the anionic lipid bilayer structure of bacterial outer membranes interacts 

with the positive charge of AMP, resulting in rapid destruction of the bacterial membrane 
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(Diehnelt, 2013). Additionally, reduced propensity to develop resistance against AMP compared to 

common antibiotics have been reported to date (Bahar and Ren, 2013). Figure 7 illustrates the 

overall resistance mechanisms to AMP.  

 

Fig. 7. Diagrammatic illustration of AMP resistance mechanisms: (A) Gram-positive bacteria, resistance to 

AMP occurs by D-alanine and L-lysine alteration of phospholipids by teichoic acids. (B) Gram-negative 

strains exhibits resistance towards AMP via altering lipopolysaccharide molecules with aminoarabinose or 

acylation of   Lipid A   unit of lipopolysaccharide molecules. (C) Bacteria release proteins (+ charged) that 

integrate with the membrane, and positively charged bacterial membrane can regulate cationic AMP. (D) 

Bacteria induce the formation of negatively charged proteins secreted to bind and block AMP in the 
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extracellular environment. (E) The intracellular AMP are squeezed out by efflux pumps. (F) The AMP 

within the cell are susceptible to degradation by proteases.  

 

 

4. Inorganic NM as carriers for AMP 

Although AMP display broad-spectrum antimicrobial activity, they are rapidly degraded by 

proteases of bacteria and human defense cells, resulting in the loss of their antimicrobial 

efficacy. When administered intravenously, AMP are rapidly cleared from the circulatory system 

and deposition in the reticuloendothelial system (RES). AMP in the RES display loss in 

antimicrobial activity and increase in systemic toxicity (Singh et al., 2014)(VanderVen et al., 

2015). Consequently, especially inorganic NM have gained significant interest lately as potential 

carriers of AMP, which confer protection against chemical and enzymatic degradation, 

controlled release possibilities, enhanced potency and reduced systemic toxicity of encapsulated 

or surface-immobilised AMP (Almaaytah et al., 2017). 

4.1. Inorganic NM for the delivery of loaded AMP 

The well-defined nanometer pores of MSNs allow active packing of AMP and further control of 

their release at the target site. Loading and release kinetics of entrapped drug/biological moieties 

inside MSNs can be regulated by varying surface properties and pore size (Bharti et al., 2015). 

Adsorption of AMP to mesoporous silica was found to be regulated by the pore size and AMP 

concentration in solution. At low AMP concentration, AMP's dimer form strongly adsorbed into 

mesoporous silica with the same pore size as that of the AMP dimer through multivalent peptide-

silica interactions (Braun et al., 2017). However, at higher AMP concentration, formation of 

trimer and tetramer forms of peptides showed higher affinity for the pore walls and outer surface of 

larger sized MSNs. 
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The adsorption of AMP did not occur due to the low peptide-silica interaction that demands 

larger peptide aggregates to enhance adsorption. Peptides adsorbed onto small-sized MSN 

exhibited a faster release rate compared to that of peptides absorbed onto larger MSNs (Braun et 

al., 2017). Likewise, Lzquierdo-Barba et al (Izquierdo-Barba et al., 2009) compared the release 

behavior of high molecular weight LL-37 with low molecular weight chlorhexidine from silica 

monoliths and reported slow-release (~200 h) of both antimicrobial compounds. The release rate of 

such antimicrobials can be altered through the conjugation of the thiol group to the pore wall of silica 

monoliths. Furthermore, both LL-37 and chlorhexidine containing mesoporous silica monoliths 

exhibited antimicrobial activity against both S. aureus and E.coli , and the monolith containing  LL-

37 displayed low cytotoxicity against human keratinocytes and erythrocytes (Izquierdo-Barba et 

al., 2009). Linden et al. compared anionic MSN(-ve), cationic MSN(+ve), and anionic non-

porous silica nanoparticles (NSP) for loading and discharge of the cationic LL-

37(LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) AMP, along with its impacts on 

the antimicrobial effect. MSN(-ve) were found to carry a higher amount of LL-37 compared to 

MSN(+ve) and NSP, and conferred protection to AMP against degradation by proteases. 

Interestingly, though less in quantity, cationic LL-37 non-electrostatically adsorbed onto 

MSN(+ve), which might happen due to the reduction of positive surface charge. When studied 

adsorption of these NM on anionic DOPE/DOPG (dioleoylphosphatidylethnolamine/ 

dioleylphosphatidylglycerol) bilayers, a bacteria-mimicking PM, it was found that MSN(-ve) 

neither adsorbed nor disturbed DOPE/DOPG bilayers unless it was loaded with LL-37 AMP. At the 

same time, NSP because of high –ve charge on their surface obtains a resilient LL-37 coating, 
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exhibited low AMP release (Jacob, 2016). Like NSP, MSN(+ve) displayed particle mediated 

membrane disruption but also exhibited toxicity against erythrocytes (Braun et al., 2016). 

Further addressing SiO2 NM as sustained delivery vehicles of AMP, Johnson et al. studied the 

diffusion of AMP from bioinorganic Si-ANM. They were reported to release the entrapped 

cationic decapeptide, KSL (KKVVFKVKFK), in a sustained manner over 5 days. Interestingly, 

released KSL was found to be identical to its free form and retained antimicrobial activity. After 5 

days of diffusion study, when Si-ANM had undergone antimicrobial assay against S.aureus and S. 

epidemidis, no antimicrobial effects were observed (MIC> 225 µg/mL). Furthermore, the trypsin 

digestion assay revealed that free KSL was degraded entirely, whereas KSL recovered from Si-

ANM after trypsin treatment was intact and active. These results show that SiO2NM not only 

confer protection to KSL against proteolytic degradation, but also facilitate sustained release of 

AMP. Sustained release of AMP over extended periods is an essential requirement for implant-

associated infection, i.e. inhibition of bacterial growth or biofilm formation on the device surface 

(Eby, Farrington and Johnson, 2008). 

4.2. Inorganic NM for the delivery of the surface conjugated AMP 

The biomimetic mimicry, a novel approach for precise drug delivery, where biomolecules are 

conjugated on NM surfaces is one of the new frontiers in material research to solve the 

limitations associated with metal NM (Lee, Ashe and Laurencin, 2014). Surface conjugation of 

biomolecules to NM confers stability, prevent agglomeration, attenuate toxicity, prolong the 

circulation time, and increase biocompatibility (Baptista et al., 2013). For example, lysozyme 

incorporated with TiO2 NM protect it from denaturation and confer functional properties to the bio-

nanocomposite (Luckarift et al., 2006). Magnetic FeO NM were also used as carriers for delivery 

of significant biomolecules as depicted in Figure 8, such as peptides (Veiseh et al., 2009), 



51 

 

antibodies (Tsourkas et al., 2005), aptamers, DNA (Josephson, Manuel Perez and Weissleder, 

2001), and RNA (Reimhult, 2013) according to five different strategies: 

 

A] Ligand binding through chemisorption of thiol groups onto the exterior surface 

B] Electrostatic adsorption of opposite charges 

C] Covalent binding by compatible functional groups 

D] Non-covalent bonding, e.g. biotinylated oligonucleotides conjugated to streptavidin-Au NM  

E] Encapsulation, i.e., incorporation of the biomolecules inside within the NM matrix. 
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Fig.8. Five general strategies of peptides-NM generation: (i) Electrostatic interaction between the surface of 

the NM and the peptide to induce peptide assembly; (ii) Direct binding to NM surface; for example, direct 

binding of free thiols with the surface of Au NM. (iii) These strategies can modify the peptide surface so that 

it can specifically interact to form biotin−streptavidin complexes. (iv) Direct covalent attachment, by 

utilizing chemistry such as 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (EDC)-based coupling of 

amines to carboxyls; (v) Encapsulation of peptide inside the NM matrix.  

Reproduced with the permission from  (Sapsford et al., 2013) Copyright © 2013 American Chemical 

Society. 
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4.3. Antimicrobial applications of AMP-conjugated inorganic NM 

In this section, examples of recent research on AMP conjugated NM as antimicrobial agents are 

reviewed. In general, peptides exhibit a lower degree of toxicity and immune response than to high-

molecular-weight polymers, such as polyethyleneimine (PEIs), which are easily degraded in the 

body by enzymes (Xue, Liu and Wong, 2014). Few of these peptides have been proven to have a 

specific binding affinity for cells. Conjugation of NM with these peptides not only elevate their cell 

uptake but also enhance their cellular localization (Liu et al., 2007)(Nativo, Prior and Brust, 

2008). For example, chemical functionalization of the TAT-derived peptide (Chem, 1997) on other 

biomolecules such as proteins (Fawell et al., 1994), small interfering RNA (siRNA)(Turner et al., 

2007), and liposomes (Pappalardo et al., 2009) facilitates their cellular uptake. Furthermore, Tat-

derived peptides act as carriers to facilitate delivery of proteins (Schwarze et al., 1999), QDs (Stroh 

et al., 2005) and polymeric micelles (Liu et al., 2008) to the central nervous system (CNS), because 

of their capability to cross the blood-brain barrier (BBB)(Alyautdin et al., 2014). Moreover, as 

described in section 3.1., peptide-NM are involved in cellular uptake in phagocytic immune cells 

and innate immune responses (Yang et al., 2016). Recent literature has also indicated that 

antimicrobial activity against gram-positive bacteria is exerted by cationic NM created by 

amphiphilic peptide self-assembly (Niño-Martínez et al., 2019). This amphiphilic peptide, 

C17H35GR7RGDS NM, contained seven arginine residues that facilitated membrane translocation 

and reduced bacterial adhesion to fibronectin. 
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AMP functionalized Au NM 

Ferreira et al. observed high antimicrobial activity by peptide-conjugated Au NM (CM-SH-Au 

NM) against  E. coli (Ferreira et al., 2016). The in vivo antimicrobial potency of CM-SH-Au NM 

was tested in murine wounds, topically infected with gram-positive and gram–negative bacteria. 

Animals treated with CM-SH-Au NM were found to have a significant attenuation in bacterial 

count. Furthermore, in vivo biodistribution study revealed that less than 5% of Au NM was 

deposited in the spleen, liver, lung, and kidney. The researchers concluded from the in vitro and in 

vivo results that CM-SH-Au NM has promising antibacterial potency. A disadvantage of AMP, 

when decorated onto Au NM, is induction of precipitation of the Au NM. Consequently, in this 

case, AMP on the Au NM surface is insufficient for antimicrobial activity. In contrast, AMP 

conjugation onto Au NM surfaces via the reduction of Au(III) in the presence of side-chain 

protected N-terminus Cys containing peptide and NaBH4, confer secondary α-helical structure 

upon AMP-conjugated Au NM interacting with the bacterial membrane. As a consequence, the 

desired antimicrobial effect is preserved, as shown in Figure 9.  

 

Fig. 9. Illustration of AMP conjugated onto the Au NM surface (B). Conjugates adopt secondary α-helical 

structure upon contact with bacterial membranes to exhibit antimicrobial property (C). Any attachment of  

Lys with the Au NM leads to precipitation of Au NM (A). Reproduced with permission  from (Wadhwani et 

al., 2017) Copyright © 2017 RSC Publishing 
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AMP-Au NM conjugates confers AMP stability against protease degradation and enhances the 

AMP half-life for up to 24 h. Interestingly, it was reported that AMP-Au NM retained similar 

activity as the free AMP in an aqueous buffer against both gram-positive and gram–negative 

bacteria (Wadhwani et al., 2017). Chang et al. evaluated the antimicrobial efficacy of 1- 

dodecanethiol (DT) and Surfactin (SFT) immobilised gold nanodots (SFT-DT-AuNDs). They found 

>80-fold lower MIC compared to SFT and DT-AuNDs against MRSA stains. These effects were 

correlated to synergistic bacterial membrane damage by SFT and DT-AuNDs. Besides, hemolysis 

and cytotoxicity assays revealed higher biocompatibility of SFT-DT-AuNDs than free SFT. Lee et 

al. studied the efficacy of Au NM-Apt (Au NM conjugated with DNA aptamer) for efficient 

delivery of C-terminally hexahistidine tagged A3-APO
His

 peptide into S. typhimurium infected 

mammalian cells (Yeom et al., 2016). Changes in the morphology of S. typhimurium cells were 

observed when the cells were treated with A3-APO and A3-APO
His

peptide. SEM analysis showed 

disruption of PM when incubated with A3-APO
His 

whereas A3-APO did not affect the membrane. 

Besides, the SYTOX assay disclosed that A3APOH caused S. Typhimurium internal PM 

disturbance resulting in increased SYTOX green fluorescence intensity due to binding of the 

cationic dye to the nucleic acid. S. typhimurium-infected HeLa cells were used to test the 

antimicrobial potency of Au NM-AptHis-A3-APO
His

. The result showed that the number of 

intracellular S. typhimurium cells was found to be 30-50% less when treated with Au NM-AptHis-

A3-APO
His

 than those treated with Au NM-Apt
His

, which exhibits negligible effects on S. 

typhimurium viability. Because all the S. typhimurium infected mice after intravenous 

administration of Au NM-AptHis-A3-APO
His 

 survived, it was concluded that Au NM-Apt is more 

efficient in removing intracellular S. typhimurium cells both in vitro and in vivo without inducing 

toxicity to healthy mammalian cells. 
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AMP functionalized Ag NM 

Metal/metal oxide NM can impart new functionality and reactivity to the new compounds, which 

can lead to promising bactericidal effects against multidrug-resistant bacteria (Chaloupka, Malam 

and Seifalian, 2010)(Kalishwaralal et al., 2010). For example, bivalent Ag NM conjugated with 

histatin-1, an AMP that is involved in re-epithelialization processes (Oudhoff et al., 2008), has 

shown promising MIC values (around 1 mg/L) against gram-positive and gram–negative bacteria 

with potent wound healing properties (Pal et al., 2014)(Pal et al., 2014). Ag NM at a certain 

concentration is known to be toxic to mammalian cell lines (Skalska and Strużyńska, 2015). 

Surface modification of Ag NM with AMP reduces the toxicity of Ag NM and enhances stability 

and antimicrobial activity. For instance, the strong interaction of positively charged non-cysteine 

containing AMP with Ag NM (Liu et al., 2013) can disturb the conformation of AMP, resulting in 

decreased antimicrobial efficacy. Therefore, the main parameter in the design of new conjugates 

is the balance of stability/strong interaction for achieving optimal antimicrobial activity. The Ag 

NM and resultant AMP-Ag NM conjugate have shown enhanced stability and antimicrobial efficacy 

in comparison to the Ag NM and AMP alone. When the antibacterial mechanism of AMP-Ag NM 

was studied, conjugates disturb bacterial PM more significantly compared to AMP alone. 

Furthermore, fluorescence-activated cell sorting (FACS) assay has been used to measure bactericidal 

potency of AMP, AMP-Ag NM, and Ag NM. Results of bacterial cell death revealed synergistic 

antimicrobial activity AMP-Ag NM (60% dead cell population) compared to Ag NM (31%) and 

AMP (33%), respectively. This study concluded that Ag NM, due to its negative charge, was unable 

to interact with PM and confirmed that AMP on the Ag NM surface is responsible for bacterial PM, 

damage followed by the arrest of transcription and translation (Pal et al., 2016). Similarly, Liu et. 

al. showed that conjugation of AMP with Ag NM elevate their bactericidal effect compared to 
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unbound AMP, and enhanced the biocompatibility of Ag NM compared to using the Ag NM 

alone (Liu et al., 2013). Navani et. al. (Lambadi et al., 2015) found ~3- fold antibiofilm activity 

increase of Polymyxin-B conjugated Au NM (PBAu NM) compared to citrate-capped Au NM. 

The result revealed that the antimicrobial activity of PBAu NM coated surgical blades was 

enhanced compared to citrate-capped Au NM and uncoated surgical blades. This was due to highly 

cationic Polymyxin-B on the Au NM surface. The result of in vitro antimicrobial assay, live/dead 

staining, and flow cytometry are also in agreement with the elevated antimicrobial activity of PBAu 

NM against P. aeruginosa. 

 

Table 4: Examples of various AMP-conjugated metal NM. 
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AMP Metal NM Tested microorganism(s) Effect(s) of nano-formulation Ref. 

Bacteriocin  

 

Au 

 

 

 

Au 

 

 

 

Ag 

 

 

 

 

 

Au 

 

 

 

 

 

 

B cereus, E. coli, S. aureus, and M 

luteus 

 

 

Lmonoytogenes 

 

 

 

A group of Gram +and Gram -

bacteria 

 

 

 

 

E bieneusi spores 

 

 

 

 

 

 

Enhanced the AMA against some 

food spoiling microorganisms 

 

24 AA LeuA peptide exhibited 

higher propensity towards Gram 

+bacteria whereas 14 AA did not 

show bacterial attachments 

 

Demonstrated broad-spectrum 

inhibition against a group of food 

pathogens without any detectable 

toxicity to red blood cell 

 

 

Increased the anti-microsporidial 

effect without significant cell 

toxicity 

 

 

(Thirumurugan, 

Ramachandran 

and Shiamala 

Gowri, 2013) 

 

(Etayash et al., 

2013) 

 

 

 

(Sharma et al., 

2012) 

 

 

 

 

(Mossallam, 

Amer and Diab, 

2014) 

 

 

Bacteriocin produced by 

Lactobacillus plantarum 

ATM 11 and nisin 

 

 

 

24 AA LeuA 

 

 

 

Enterocin 

 

 

 

 

Bacteriocin produced by 

Lactobacillus 

acidophilus CH1 
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Nisin 

 

 

PEP 

 

 

EEEEAAAVVVK-

C14H26 

 

 

Esculentin-1a(1-21)NH2 

 

Nanofibers 

with Ag 

 

Au 

 

 

Ag 

 

 

 

Au 

S. aureus, P. aeruginosa, K. 

pneumonia, E. coli, S. typhimurium 

 

S. aureus 

E. coli 

 

E. coli 

 

 

 

P. aeruginosa 

Provided a broad-spectrum AMA 

 

 

Enhanced transfection efficiency 

and synergetic AMA 

 

Exhibited low toxicity toward 

eukaryotic cells 

 

 

A 15fold increase in antimicrobial 

potency compared to free peptide 

alone without toxic to human 

keratinocytes 

(Ahire, Neveling 

and Dicks, 2015) 

 

(L. H. Peng et 

al., 2016) 

 

(Pazos et al., 

2016)(Yu, Wang 

and Wei, 2017) 

 

(Casciaro et al., 

2017) 
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5. Conclusion and perspectives 

The bactericidal efficiency of various NM, antimicrobial peptides, and peptide conjugated NM 

against different bacterial strains have been provided in this review. In general, the antimicrobial 

activity of nanometals, AMP, and antimicrobial peptide conjugated NM depends on the bacterial 

cell surfaces and NM conjugation characteristics. The biomimetic properties of AMP assist the 

targeted delivery of peptide conjugated NM, whereas ions released from NM kill microbial 

pathogens. However, further studies should elucidate the precise mechanism of metal ions, 

whether membrane disturbance or cytoskeleton detachment from the plasma membrane is 

causing cell death. Most of the antimicrobial properties have to date been tested against E. coli 

and S. aureus. To demonstrate the wide variety of bactericidal/bacteriostatic characteristics of 

peptide conjugated NM, it will be essential to explore other pathogenic species and phenotypes. 

In comparison to bacteria, there are very few reports on the antifungal properties of antimicrobial 

peptides. Some studies have demonstrated that covalent surface modification with exposure to 

oxygen or the presence of UV can create rapid cytotoxicity. Therefore, toxicity should also be 

studied under circumstances of UV and air exposure. It has also been found that different 

physical and chemical parameters of NM, such as size, shape, surface-to-volume ratio, the 

surface charge of the particles, and their synthesis methods influence their antibacterial 

efficiency. For example, Ag NM with the same surface areas but with distinct shapes may have 

different bactericidal activity against pathogens. Thus, the antimicrobial effects of AMP 

conjugated to NM with different physicochemical characteristics against different bacterial 

strains should be the next line of research. One major limitation for advancements of peptide 

conjugated metal NM is that in vivo and in vitro antimicrobial activity do not discriminate 
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whether peptide conjugated NM can kill pathogenic microorganisms selectively without 

influencing healthy mammalian cells. In this scenario, the study of the interaction of various 

shapes of NM on mammalian cells should be carried out. Moreover, non-metals such as Ag and 

Cu non-specifically kill pathogens and, therefore, toxicity against mammalian cells should also 

be investigated. 
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