95 research outputs found

    Inconspicuous but Indispensable: Charles Anderson Dana as Assistant Secretary of War

    Get PDF
    Charles Anderson Dana\u27s contributions to Union victory during the American Civil War extend far beyond his well-known relationship with General Ulysses S. Grant. Using both his journalistic talents and patriotism, he gained Secretary of War Edwin M. Stanton\u27s trust, which was essential for Dana to perform his duties effectively at the War Department in Washington City from 1864 to 1865. His obligations encompassed a broad spectrum of responsibilities from investigating dishonest contractors and federal officials attempting to defraud the government to authorizing the arbitrary arrests of civilians. He simultaneously performed lesser-known activities such as arranging soldiers\u27 furloughs for the 1864 presidential election, functioning as a point of contact for prison facilities, overseeing massive troop movements, procuring supplies, military recruitment, and additional miscellaneous issues that constantly flooded the department during his tenure. Examining Dana\u27s involvement with these obscure, yet vital matters not only reveals the extent of the War Department\u27s authority but also accentuates Dana\u27s key contributions to the Union war effort

    In vivo Gold Nanoparticle Delivery of Peptide Vaccine Induces Anti-Tumor Immune Response in Prophylactic and Therapeutic Tumor Models

    Get PDF
    Gold nanoparticles (AuNPs) are promising vehicles for cancer immunotherapy, with demonstrated efficacy in immune delivery and innate cell stimulation. Nevertheless, their potential has yet to be assessed in the in vivo application of peptide cancer vaccines. In this study, it is hypothesized that the immune distribution and adjuvant qualities of AuNPs could be leveraged to facilitate delivery of the ovalbumin (OVA) peptide antigen and the CpG adjuvant and enhance their therapeutic effect in a B16-OVA tumor model. AuNP delivery of OVA (AuNP-OVA) and of CpG (AuNP-CpG) enhanced the efficacy of both agents and induced strong antigen-specific responses. In addition, it is found that AuNP-OVA delivery alone, without CpG, is sufficient to promote significant antigen-specific responses, leading to subsequent anti-tumor activity and prolonged survival in both prophylactic and therapeutic in vivo tumor models. This enhanced therapeutic efficacy is likely due to the adjuvant effect of peptide coated AuNPs, as they induce inflammatory cytokine release when cultured with bone marrow dendritic cells. Overall, AuNP-mediated OVA peptide delivery can produce significant therapeutic benefits without the need of adjuvant, indicating that AuNPs are effective peptide vaccine carriers with the potential to permit the use of lower and safer adjuvant doses during vaccination

    High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro

    Get PDF
    Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types

    Gold Nanoparticle Delivery of Modified CpG Stimulates Macrophages and Inhibits Tumor Growth for Enhanced Immunotherapy

    Get PDF
    Gold nanoparticle accumulation in immune cells has commonly been viewed as a side effect for cancer therapeutic delivery; however, this phenomenon can be utilized for developing gold nanoparticle mediated immunotherapy. Here, we conjugated a modified CpG oligodeoxynucleotide immune stimulant to gold nanoparticles using a simple and scalable selfassembled monolayer scheme that enhanced the functionality of CpG in vitro and in vivo. Nanoparticles can attenuate systemic side effects by enhancing CpG delivery passively to innate effector cells. The use of a triethylene glycol (TEG) spacer on top of the traditional poly-thymidine spacer increased CpG macrophage stimulatory effects without sacrificing DNA content on the nanoparticle, which directly correlates to particle uptake. In addition, the immune effects of modified CpGAuNPs were altered by the core particle size, with smaller 15 nm AuNPs generating maximum immune response. These TEG modified CpG-AuNP complexes induced macrophage and dendritic cell tumor infiltration, significantly inhibited tumor growth, and promoted survival in mice when compared to treatments with free CpG

    New science, synthesis, scholarship, and strategic vision for society

    Get PDF
    Harvard Forest LTER (HFR) is a two decade-strong, integrated research and educational program investigating responses of forest dynamics to natural and human disturbances and environmental changes over broad spatial and temporal scales. HFR engages \u3e30 researchers, \u3e200 graduate and undergraduate students, and dozens of institutions in research into fundamental and applied ecological questions of national and international relevance. Through LTER I–IV, HFR has added historical perspectives, expanded its scope to the New England region, integrated social, biological, and physical sciences, and developed education and outreach programs for K-12, undergraduate, and graduate students, along with managers, decision-makers, and media professionals

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Observation Locator Table Access Protocol Version 1.0

    Get PDF
    The Observation Locator Table Access Protocol (ObsLocTAP) defines a data model for scheduled observations and a method to run queries over compliant data, using several Virtual Observatory technologies. The data model builds on the ObsCore data model, removing elements associated with dataset access that are not available during the planning phase. In this way, this standard is focused on access to metadata related to the planning of a certain observatory, more than on access to the scientific data products. Also, the data model will be focused on discovery of planned observations, which is very useful information for multi-wavelength coordination observations, re-planning information propagation, follow-up of Targets of Opportunity alerts, preparation of proposals, etc. As with ObsCore, a serialisation into a relational table is defined, which allows users to run complex queries using the IVOA Table Access Protocol. The document also prescribes how to register and discover ObsLocTAP services

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore