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Abstract
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents
with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the
spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a
combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically
Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low
median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few
recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies
included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal
deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare,
potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1,
and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges
current therapeutic strategies reliant upon frequently altered oncogenic drivers.

Neuroblastoma is an embryonal malignancy of early childhood with a poor prognosis for
patients diagnosed at over 18 months of age with disseminated disease, overall accounting
for 12% of childhood cancer-related deaths1,2. Despite multimodal chemo- and immuno-
therapeutic strategies that improved the survival of patients with high-risk disease3,4, a
disproportionate number of these patients will die or suffer profound treatment-related
morbidity5. Novel therapeutic approaches are needed to improve cure rates while
minimizing toxicity.

Highly penetrant, heritable mutations in the ALK or PHOX2B genes account for the
majority of familial neuroblastomas6–9. For patients with sporadic disease, genome-wide
association studies have identified multiple DNA polymorphisms in genes that influence
neuroblastoma susceptibility and clinical phenotype10–15. Somatically acquired
amplification of MYCN, and hemizygous deletions of 1p and 11q are highly recurrent and
are associated with poor prognosis16. While these latter aberrations are useful as prognostic
biomarkers of patient outcome, there remain few known oncogenic drivers of the malignant
process.
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Three recent studies have together reported genome or exome analysis of 162 neuroblastoma
cases17–19. Molenaar and colleagues reported an overall low somatic mutation count (12 per
tumor), few recurrent mutations beyond ALK (7% of cases) and TIAM1 (3%), a high
frequency of chromothripsis in stage 3 and 4 tumors (18%), and frequent mutation of Rac/
Rho pathway genes regulating neuritogenesis17. Cheung and colleagues found ATRX loss-
of-function mutations and deletions associated with neuroblastoma in adolescents and young
adults18. Sausen and colleagues uncovered recurrent mutation or focal deletion of ARID1A
and ARID1B in 11% of cases using a low coverage WGS and targeted sequencing
strategy19. Given the genetic heterogeneity described in neuroblastoma, we sought to build
upon these studies through a focused analysis of a large cohort of high-risk stage 4
neuroblastomas, where the need for translational advances are most pressing, using several
genomic approaches.

Here we examined 240 matched tumor/normal (blood leukocyte) pairs from patients older
than 18 months of age at diagnosis with metastatic (Stage 4) disease by whole exome
sequencing (WES; 221 cases), whole genome sequencing (WGS; 18 cases; one using two
different sequencing platforms), or both (1 case; Supplementary Table 1; Supplementary
Note). WES of ~33 megabases of coding sequence yielded an average 124X coverage with
87% of bases suitable for mutation detection (Supplementary Figure 1, Supplementary Table
2). We used two different WGS approaches, Illumina20 (10 cases, 29.7X average coverage)
and Complete Genomics21 (10 cases, 59.9X average coverage), to interrogate structural
variation and supplement mutation detection (powered to detect mutations at 86% and 94%
of mappable exonic bases, respectively). To assess expression of mutations and fusion
transcripts, over 10 Gbp of RNA-seq data was generated for the ten Illumina WGS cases.

Across the coding regions of 240 cases, we detected 5,291 candidate somatic mutations in
3,960 genes (Supplementary Table 3). A median of 18 candidate exomic mutations (17
substitutions, 1 indel) was found per tumor (range 0-218), of which 14 were non-silent
mutations predicted to alter protein sequences (range 0-158, median 12 missense, 1
nonsense, 1 indel, 0 splice site, Supplementary Table 1). This corresponds to a median
frequency of 0.60 mutations per megabase (0.48 non-silent per megabase), considering only
exonic bases with sufficient data for mutation detection (Figure 1). This frequency is
consistent with unselected neuroblastomas17–19, medulloblastoma22, and hematopoietic
malignancies23,24, twice that of pediatric rhabdoid cancer25, and significantly less than adult
solid tumors24,26,27, particularly those with strong environmental contribution24,28–31. We
verified 241 of 282 coding candidate somatic substitutions (85%, 525 of 605 including non-
coding) and 26/41 coding indels (63%, 27/79 including non-coding) using mass-
spectrometric genotyping or PCR-based re-sequencing (Supplementary Text).

We did not observe a correlation between mutation frequency and age at diagnosis (p=0.28,
Spearman) or other clinical variables (Supplementary Table 4). Consistent with a postulated
limited environmental contribution to neuroblastoma development1, context-specific
transition and transversion rates were not elevated compared to other cancers
(Supplementary Figure 2) and we did not detect significant sequencing reads corresponding
to pathogenic viruses (Supplementary Table 5). Two tumors with markedly increased
mutation frequencies (7.27 and 4.29 mutations per megabase) harbored alterations of DNA
repair genes (nonsense mutation and deletion of MLH1 and nonsense mutation of DB1).

Using the MutSig algorithm32, we identified six genes mutated at a significant frequency in
the 240 tumors (q<0.1; Table 1; Supplementary Table 6). A seventh gene, NRAS, was
implicated by restricting this analysis to genes listed in the Catalogue of Somatic Mutations
in Cancer (COSMIC, v48)33. Using neuroblastoma data from our RNA-seq cohort (10
cases), the TARGET RNA microarray project (250 cases), and a publically-available RNA
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microarray project (416 cases)34, we determined that OR5T1 and PDE6G have very low or
absent mRNA expression in neuroblastoma (Supplementary Figure 3). Therefore, we
focused our analysis on five genes with statistical and biological rationale for neuroblastoma
involvement: ALK, PTPN11, ATRX, MYCN, and NRAS.

ALK and PTPN11 were previously reported to be mutated in up to 10% and 3.4% of
neuroblastoma cases respectively8,9,35–37 consistent with our screen here. All 22 somatic
ALK mutations (9.2%) were restricted to the kinase domain and all 7 PTPN11 mutations
(2.9%) have been previously reported33,37–40. While no pathogenic germline PTPN11
variants were found, two patients had germline ALK variants: pathogenic, activating
p.Arg1275Gln and the likely benign, kinase-dead p.IIle1250Thr. Activating ALK variants
were not associated with MYCN amplification (p=0.28). Contrary to a prior report41, we did
not observe p.Phe1174 mutations in a higher proportion of MYCN-amplified cases than
wild-type ALK cases (p=0.53). Notably, ALK was the only significantly mutated gene with
an association with clinical outcome, as mutation positive cases had a decreased overall
survival probability (p=0.0103, Supplementary Figure 4).

Loss-of-function mutations or deletions of RNA-helicase ATRX have recently been
described in neuroblastoma17,18. We observed putative loss of function ATRX alterations in
9.6% of cases (6 mutations, 17 multi-exon deletions; Supplementary Figure 5). We
confirmed prior observations18 that alterations of ATRX and MYCN were mutually
exclusive and that ATRX alterations were enriched in older children (p=0.0021,
Supplementary Figure 6). One case had an apparent gain of exons 18-26 of unclear
functional effect.

High-level MYCN amplification has long been known as a negative prognostic indicator in
neuroblastoma42, but activating mutations have not been described. In our cohort, four cases
without MYCN amplification had an identical p.Phe44Leu alteration. All four tumors had
regional single-copy gain of chromosome 2p, three with gain of the mutant allele. In a tumor
with matched RNA-seq data, the mutant allele was expressed at a level twice that of wild-
type. This mutation has been documented in single cases of glioblastoma, medulloblastoma,
and pancreatic adenocarcinoma33, and is scored as functional by PolyPhen243 (score 0.971),
SIFT44 (score 0), MutationTaster45 (score 1.0), and AlignGVGD46 (score C65). The residue
is highly conserved across the MYC superfamily (pfam01056; Supplementary Figure 7)47,
and an additional tumor had a mutation in the homologous domain of MYC, p.Thr58Ile, a
common mutation in Burkitt lymphoma48. Despite the relative infrequency of MYCN
mutations in neuroblastoma, these mutations may be clinically relevant if they confer myc
dependency similar to high-level amplification.

We next searched, as previously described22,27, for enrichment of somatic mutations in
components of canonical pathways49, chromatin modifiers, or splice factors50–52. Of 857
gene sets, 12 were enriched for somatic mutation (q<0.1, Supplementary Table 7), 8
implicating RAS/MAPK signaling components. Contrary to Molenaar and colleagues17, we
did not see any mutations in TIAM1 nor any enrichment of mutations in genes regulating
neuritogenesis and GTPase activity through the Rac/Rho pathway (q>0.275, Supplementary
Text). However, an analysis of their mutation list using our methods recapitulated their
finding of significant mutation frequencies in guanine nucleotide exchange factors
(q=6.26×10−3) and GTPase activating proteins (q=3.15×10−5), but none of the 12 pathways
identified by analysis of our cohort (q≥0.848). This comparison suggests limitations to
current gene set and pathway analysis methods, especially when mutation frequencies are
low.
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Molenaar and colleagues reported somatic mutations in FANCM and FAN1 in two cases
with chromothripsis17. While we observed 3 cases with FANCM mutations, Fanconi-
Anemia genes were not enriched for somatic mutation (q=0.764, Supplementary Table 7),
nor did we detect any exonic breakpoints in cases with FANCM mutations. This is perhaps
not surprising given the relatively small portion of the genome queried by exome
sequencing, so we cannot rule out an association of FANCM mutations and chromothripsis
at this time.

Of the five recurrently mutated genes reported by Sausen and colleagues, we found
mutations in ALK (see above), ARID1A (p.G1139V, p.G1942D) and VANGL1
(p.Gly308Trp). Two cases had focal deletions of ARID1B: PASLGS had an exon 2 deletion
(Figure 2, Supplementary Table 10) and PARGKK had loss of exons 1-3. Of the 113 genes
with apparent hemizygous mutations on 1p, 3p, and 11q (arms frequently lost in
neuroblastoma), only PBRM1 showed loss-of-function mutations in two cases, all others
were singleton variations (Supplementary Note).

To identify rare germline variants predisposing to neuroblastoma, we searched for
enrichment of clinically-annotated variants from the ClinVar database and loss-of-function
variants in cancer genes53–55 in the blood-derived DNA samples from our WES cohort,
compared to normal DNAs from 1,974 European American individuals sequenced by the
Exome Sequencing Project (ESP)56 (see Methods, Supplementary Tables 8 and 9, and
Supplementary Figure 8). This approach nominated five genes with candidate germline
pathogenic variants: ALK, CHEK2, PINK1, TP53 and BARD1 (Table 2). The ALK
p.Arg1275Gln variant has been reported as the most common pathogenic variant in familial
neuroblastoma8,9. Three CHEK2 germline variants destabilize the protein57,58 and are
reported cancer predisposition alleles58,59 not previously described in neuroblastoma. The
TP53 p.Pro219Ser variant has been associated with Li-Fraumeni syndrome60, consistent
with prior reports of neuroblastomas occurring in these families61. Two PINK1 variants are
associated with Parkinson disease62–64, and this gene is known to be transcriptionally
regulated by myc proteins65. Finally, two loss of function variants in BARD1, a recently
discovered neuroblastoma susceptibility locus14, support the concept that rare variants may
exist at loci where common polymorphisms impact disease occurrence. Another member of
the BRCA complex, PALB2, had a germline variant predicted to ablate a splice site in one
case (Table 2) and a somatic missense mutation in another (Figure 1, Supplementary Table
3). Taken together, our conservative approach to identifying putatively pathogenic germline
variants suggest that these events may play a larger role in neuroblastoma initiation than
previously suspected.

Structural analysis of the 19 WGS cases identified a median of 41.5 breakpoints per case
(range 29 to 143, Figure 2, Supplementary Figure 9). Overall, 83 rearrangements affected 97
genes, 22 of which had evidence from RNA-seq data (Supplementary Table 10). While 11q;
17q translocations were found in 3 of 19 cases (1 case with two events), we did not observe
any recurrent fusion transcripts in our cohort. NBAS, located near MYCN on the short arm
of chromosome 2, was the most commonly rearranged gene and harbored 11 distinct events
in three MYCN-amplified cases (Figure 2). Substantial local rearrangement was seen in
three cases, all affecting the vicinity of MYCN and NBAS loci, but the numerous complex
copy number states and retention of heterozygosity in lower copy number regions are more
consistent with an episomal model66 than chromothripsis67 in the 19 cases evaluated here
(Supplementary Figure 10). No other areas of clustered chromosomal breakpoints suggestive
of chromothripsis were identified in the WGS cases, nor were any clusters evident within
coding regions of 142 WES cases sequenced from native DNA.
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High-risk neuroblastomas harbor a very low frequency of recurrent somatic mutations. We
do not expect that significant numbers of mutations went undetected as tumor purities were
high and identical methods have identified significant mutations in other tumor
types22,23,26,27,30. The relative paucity of recurrent mutations challenges the concept that
druggable targets can be defined in each patient by DNA sequencing alone. Our data suggest
that the majority of high-risk neuroblastomas may be driven by rare germline variants and/or
by copy number alterations and epigenetic modifications during tumor evolution. The
striking lack of precisely defined genomic causes of this highly aggressive pediatric
neoplasm reinforces the need to understand the interplay of host genetic factors, somatic
mutations, chromosomal abnormalities, and epigenetic alterations in the context of nervous
system development.

Online Methods
Summary

Paired tumor/normal DNA from 240 high-risk neuroblastoma cases were identified from the
Children Oncology Group biobank on the basis of subjects having metastatic disease and
preferably being between 18 months and 5.5 years of age at diagnosis. Whole genome
sequences were generated for 19 pairs using two technologies: 9 Illumina sequencing-by-
synthesis20, 9 Complete Genomics probe-anchor-ligation21, and 1 using both. RNA-seq data
were generated for the 10 Illumina WGS cases. Whole exome sequences of 222 pairs were
generated using in-solution hybrid capture69 followed by Illumina sequencing. Phi29-based
whole genome amplification was used to generate sufficient tumor and matched normal
DNA template from 80 cases. Reads were aligned to build hg19/GRCh37 of the human
genome reference sequence using Burrows-Wheeler Aligner70 and somatic mutations were
detected using SNVmix71 (Illumina genomes and RNA-seq), muTect27 (exomes) and
version 2 of the Complete Genomics’ custom caller21,72 (Complete Genomics genomes).
Mutations were annotated using Oncotator and MutSig32 was used to identify genes mutated
at significant frequencies. PathSeq73 was used to query exome data sets for reads supporting
viral infection. These and other tools used for exome sequence analysis are described on the
Broad Institute Cancer Genome Analysis website. Rearrangements were detected from
whole genome data using trans-ABySS de novo assembly74 and Complete Genomics’
custom software75. Somatic mutations and structural alterations were confirmed by mass-
spectrometric genotyping (Sequenom) or PCR followed by Sanger or Illumina sequencing.

Sample selection and preparation
This study focused on high-risk neuroblastoma, and we attempted to reduce heterogeneity
by restricting eligibility to subjects with stage 4 (metastatic) disease and preferably between
1.5 and 5.5 years of age at diagnosis (median 3.4 years, range 1.5 – 16.5 years)
(Supplementary Table 1). All specimens were obtained at original diagnosis after informed
consent at Children’s Oncology Group member institutions. Males outnumbered females
149 to 91 (62%). Amplification of the MYCN oncogene was seen in 77 tumors (32%) by
fluorescence in situ hybridization and 131 (55%) had a diploid DNA index by flow
cytometry. Flash frozen tumor samples were analyzed for percent tumor content by
histopathology and samples with <75% tumor content were excluded.

Genome sequencing and analysis
Illumina sequencing technology (BC Cancer Agency)—Whole genome and
transcriptome libraries of 10 cases sequenced using Illumina technology at the BC Cancer
Agency were constructed from input amounts of 2-4 μg DNA and 3-10 μg DNaseI-treated
total RNA, respectively, following previously described protocols76,77. The sequencing was
carried out using Illumina GAIIx (Illumina, Hayward, CA, USA) instruments as per the

Pugh et al. Page 6

Nat Genet. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



manufacturer’s instructions. Paired end reads generated from genome and transcriptome
sequencing were aligned to the hg19/GRCh37 reference human genome assembly78 using
BWA70 version 0.5.7. RNA-seq reads were processed as previously described79,80.

Single nucleotide variant (SNV) detection in Illumina tumor genome and transcriptome data
was performed using SNVMix2 with filtering to include SNVs such that combined
probability of either heterozygous or homozygous SNV was greater than 0.9971. Reads
flagged as poor quality according to Illumina chastity filter, duplicate reads, and reads
aligned with a mapping quality < 40 were excluded from SNV calling. The somatic status of
SNV calls was determined using read evidence from the SAMtools version 0.1.13 pileup81

constructed at the variant positions in the matched normal genome. Positions with normal
genome coverage by least 5 unique reads supporting the reference allele were considered
somatic. The candidate somatic SNV calls were inspected using IGV82, and only those calls
confirmed by visual inspection were used in the analysis.

Short insertions and deletions were detected in the tumor and normal Illumina WGS bam
files using two software programs, Pindel83 and SAMtools81. The mean and standard
deviation of read pair insert sizes were calculated for all samples to be ~400 bp, and this
value was used in each Pindel run. The Pindel short insertion output was filtered to select
events that mapped to annotated genes (Ensembl59). Candidate somatic short insertion
events that recurred in at least two cases were manually reviewed using the Integrative
Genomics Viewer82. The output from SAMtools pileup and varFilter functionality81 run
separately on normal and tumor libraries were filtered to identify somatic events. In the
normals, any event with a total coverage of less than 8 was discarded. In the tumor libraries,
only indels supported by at least 16% of reads at a locus were considered. After the filtering,
any indel present in one or more normal libraries was flagged as germline. None of the
candidate somatic coding indels from the Pindel or SAMtools analysis were confirmed by
manual inspection using IGV82, consistent with the low frequency of somatic indels in the
rest of the cohort (median 1 across all other WGS and WES cases, 86 with no indels).

Copy number analysis of the Illumina WGS data was conducted using a previously
described hidden Markov model (HMM) method84. Briefly, 50 million reads with mapping
qualities >10 were randomly selected from matched tumor and normal data. Reads were
divided into bins of 200 adjacent alignments and the ratio of tumor/normal reads was
calculated for each bin. These ratios were then normalized by subtracting the median of
these ratios across the whole genome. This resulted in a metric of relative read density from
the tumors and matched normals in bins of variable length along the genome, where bin
width was inversely proportional to the number of mapped reads in the normal genome. GC
bias correction was applied, and an HMM was used to classify and segment the tumor
genome into continuous regions of somatic copy number loss (HMM state 1), neutrality
(HMM state 2), slight gain (HMM state 3), gain (HMM state 4) or high gain (HMM state 5).

To identify candidate transcript rearrangements, we used ABySS85 to perform de novo
transcriptome assembly of ten RNA-seq datasets. To identify known and novel transcript
structures, the assembled contigs were aligned to the hg19 (GRCh37) human reference
genome assembly and compared to annotated transcript models using the trans-ABySS
pipeline74. This approach identified all contigs with two discrete genomic BLAT
alignments. The top five scoring alignments were manually inspected to remove likely false
positive events primarily due to few supporting reads. Local rearrangements were identified
from contigs with single, gapped BLAT alignments and supporting read evidence from
manual review. Targeted assembly of the candidate rearrangement regions was performed to
validate the events in the genomic data.
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Complete Genomics sequencing technology—Whole genome sequencing libraries
of 10 cases were constructed from 3.5 ug of DNA and sequenced using Complete Genomics
Inc. (CGI) technology21. Sequencing and alignment of reads to hg19/GRCh37 reference
human genome assembly was performed by the CGI Cancer Sequencing service, analytic
pipeline version 1 (See Complete Genomics Analysis Tools website). Mutation call files
provided by this service were used to extract somatic mutations using the criteria in
Supplementary Table 11. CGI also provided flat files containing candidate rearrangements
and segmental relative copy number ratios derived from normalized read counts from
matched tumor and normal samples. Copy number calls were converted to the five HMM
states described above using the criteria listed in Supplementary Table 12.

Exome sequencing and analysis
The generation, sequencing, and analysis of 222 pairs of exome libraries at the Broad
Institute was performed using a previously described protocol27. Due to the small quantities
of DNA available, 81 DNA samples were amplified using Phi29-based multiple-strand
displacement whole genome amplification (Repli-g service, QIAgen). Exonic regions were
captured by in-solution hybridization using RNA baits similar to those described27 but
supplemented with additional probes capturing additional genes listed in ReqSeq78 in
addition to the original Consensus Coding Sequence (CCDS)78 set. In total, ~33 Mb of
genomic sequence was targeted, consisting of 193,094 exons from 18,863 genes annotated
by the CCDS86 and RefSeq86 databases as coding for protein or micro-RNA (accessed
November 2010). Sequencing of 76 bp paired-end reads was performed using Illumina
Genome Analyzer IIx and HiSeq 2000 instruments. Reads were aligned to the hg19/
GRCh37 build of the reference human genome sequence78using BWA70. PCR duplicates
were flagged in the bam files for exclusion from further analysis using the Picard
MarkDuplicates tool. To confirm sample identity, copy number profiles derived from
sequence data were compared with those derived from microarray data when available.
Candidate somatic base substitutions were detected using muTect (previously referred to as
muTector27) and insertions and deletions were detected using IndelGenotyper27. Segmental
copy number ratios were calculated as the ratio of tumor fraction read-depth to the average
fractional read-depth observed in normal samples for that region.

Removal of oxoG library preparation artifact—Cases sequenced using WGA and
native DNA were sequenced more than eight months apart by the Sequencing Platform at
the Broad Institute. Initial comparison of candidate mutation calls from these two data sets
identified a preponderance of apparent G>T or C>A substitutions of low allele fraction
(<0.15) and within specific sequence contexts (Supplementary Figure 2A). We subsequently
characterized this artifact and developed a method to detect and remove these events. In
brief, these artifacts are introduced at the DNA shearing step of the library construction
process and arise from the oxidation of guanine bases (oxoG) by high-energy sonication.
During downstream PCR, oxoG bases preferentially pair with thymine rather than cytosine,
resulting in apparent G>T or C>A substitutions of low allele fraction and enriched within
specific sequence contexts (Supplementary Figure 2B). Consistent with this mechanism, the
intensity of the sonication process was increased with the introduction of a new 150 bp
shearing protocol between preparation of the WGA and native DNA samples.

The number of artifacts in a library was apparently sample-dependent (Supplementary
Figure 2C) and these events were found in unmatched tumor and normal libraries. In some
cases, thousands of candidate mutations were called in cases with a heavily affected tumor
sample and an unaffected normal. However, nearly every sample had at least one such
artifact and we have observed similar events in publically available data sets from other
centers, suggesting a common artifact mode that was exacerbated in some of our samples.
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To address this problem, we devised a method to differentiate oxoG artifacts from bona fide
mutations.

Due to the modification of only one strand of a G:C base-pair (i.e. only the G base), reads
supporting the artifact have characteristic read-orientation conferred upon adapter ligation.
Therefore, all reads supporting an artifact were almost exclusively derived from the first or
second read of the Illumina HiSeq instrument. Bona fide variants are supported by near-
equal numbers of first and second reads. We made use of the skewed read-orientation
combinations and low allele fractions characteristic of this artifact to identify and remove
oxoG artifacts from mutation calls in our cohort (i.e. removal of all variants with allele
fraction <0.1 or exclusively supported by a single read orientation). This method restored the
mutation pattern and frequency seen in earlier sequencing of WGA cases (Supplementary
Figure 2D).

Verification of somatic mutations and rearrangements
We used a combination of genotyping and sequencing technologies to verify random
candidate mutations (PCR/Sanger and PCR/HiSeq sequencing of candidates from Complete
Genomics and BC Cancer Agency Illumina WGS and RNA-seq data), as well as mutations
supportive of our significance analyses (Sequenom and PCR/MiSeq of WES and WGS
data). Combining all of the validation experiments resulted in overall validation rates of
87% for substitutions (525/605 candidates, 241/282 coding) and 34% for indels (27/79
candidates, 26/41 coding). Some mutations were verified using multiple technologies and
therefore the total number of candidate mutations verified is lower than the sum total of
mutations described in the Supplementary Note. See Supplementary Note for details and
cross-platform comparisons.

Integrated analysis of somatic variation from exome and genome data sets
Somatic mutations detected in WGS, WES, and RNA-seq data sets were annotated using
Oncotator (See Broad Institute Cancer Genome Analysis webpage). Genes mutated at a
statistically significant frequency were identified using MutSig32, a method that identifies
genes with mutation frequencies greater than expected by chance, given detected
background mutation rates, gene length and callable sequence in each tumor/normal pair.
The relationship between mutation frequency and age of diagnosis was tested using the
Spearman rank test. The implementation of the Kolmogorov-Smirnov test in R version
2.11.1 (ks.test) was used to test differences in mutation frequency distributions of several
clinical variables (Supplementary Table 4).

To identify frequently mutated groups of genes, we applied the MutSig algorithm to sets of
genes rather than individual genes. These gene sets consisted of 853 “canonical pathways”
curated by Gene Set Enrichment Analysis49 as well as a lists of chromatin modifiers and
splice factors curated from the literature50–52 (Supplementary Table 6
“CHROMATIN_MODIFIERS”, “EPIGENETIC_COMPLEXES”, “SPLICE_FACTORS”,
and “DNA_METHYLATION”). Significance analysis of mutations and pathways reported
by Molenaar et al17 are provided in the Supplementary Note.

Expression analysis of significantly mutated genes
Alignments of RNA-seq data were used to estimate gene expression levels. Gene coverage
analysis was based on Ensembl gene annotations (homo_sapiens_core_59_37d). These
annotations were collapsed into a single gene model containing the union of exonic bases
from all annotated transcripts of the gene. The analysis used SAMtools pileup to get the per-
base coverage depths, and excluded reads with mapping quality < 10 and reads flagged as
poor quality according to the Illumina chastity filter. Duplicate reads were kept in this
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analysis. The reads per kilobase of exon model per million mapped reads (RPKM) metric
was used to estimate gene expression level87. RPKM was calculated using the following
formula: where

(NORM_TOTAL x sum of the lengths of all exons in the gene) NORM_TOTAL = the total
number of reads that are mapped to non-mitochondrial exons The expression threshold for
each RNA-seq library was determined as the 95th percentile of the distribution of the
expression levels of silent intergenic regions computed and defined as described on the
ALEXA platform website88. Using this threshold, we determined that ALK, PTPN11,
ATRX, MYCN, and NRAS were expressed above background in each of the 10 cases with
available RNA-seq data. In contrast, OR5T1 and PDE6G were not expressed above
background in at least 9 out of 10 cases in our cohort.

The TARGET neuroblastoma Affymetrix Human Exon Array data (manuscript in
preparation) of 250 primary diagnostic tumor specimens was normalized by quantile
normalization and summarized using robust multichip average (Affymetrix Power Tools
software package version 1.12). This dataset includes samples from 220 patients with high
risk and 30 with low risk disease. The transcript level data of core probe sets for each
sample were averaged based on gene symbol annotations provided by the manufacturer
(17,422 unique genes). To identify relative expression of genes in neuroblastomas, the
percentile values of ALK, PTPN11, ATRX, MYCN, NRAS, OR5T1, and PDE6G were
computed from the cumulative distribution function calculated for each sample’s gene
profile. Same analysis was conducted on Agilent 44K microarray data (19,528 unique
genes) of 416 neuroblastoma tumors from the MicroArray Quality Control (MAQC)-II study
(GEO GSE16716)88. This data set includes tumors from patients diagnosed with high risk
(n=135), intermediate risk (n=34), or low risk (n=247) neuroblastoma. Su et al89

demonstrated that individual tissues express 30-40% of all genes by comparing microarray
expression levels across panels of human and mouse tissues. The median percentile levels
for ALK, PTPN11, ATRX, MYCN, and NRAS in both data sets are well within the
percentile range of genes that are likely expressed in a tissue. The low median percentile
levels for OR5T1 and PDE6G (less than 40%ile and 25%ile in TARGET and MAQC-II
data) suggest low expression levels in neuroblastoma tumors (Supplementary Figure 3).

Germline variant analysis
Detection of pathogenic germline variation at base-pair resolution in a cohort of cancer
patients is complicated by selection of an appropriately matched and sized control
population, relatively high carrier frequencies for unrelated disorders, and complex genetics
underlying cancer predisposition. To nominate germline variants predisposing to
neuroblastoma, we searched for enrichment of putative functional variants in the blood-
derived DNA samples from our WES cohort compared to normal DNAs from 1,974
European American individuals sequenced by the National Heart, Lung, and Blood Institute
Grand Opportunity Exome Sequencing Project (ESP)56. As indel calls from the ESP cohort
were not publically available at the time of our study, we did not include them in our
analysis.

To ensure consistency and accuracy of germline variant detection, all neuroblastoma WES
cases were called simultaneously with 800 WES cases from the 1000Genomes project using
the UnifiedGenotyper from the Genome Analysis Toolkit. A principal component analysis
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of the genotype calls was performed to determine the ethnic background of our cases
(Supplementary Figure 7) with respect to three 1000Genomes populations. As over 80% of
our cohort was Caucasian or ad-mixed Caucasian, we downloaded genotyping calls and
coverage information from 1,974 European American individuals available on the ESP
website to serve as a control population. To focus our analysis on rare variation consistent
with the low prevalence of neuroblastoma, we removed from both data sets all variants
present in individuals sequenced as part of the 1000 Genomes project. Next, we generated
two lists of rare variants: overlaps with clinically-reported variants recorded in ClinVar
(downloaded 4/27/2012, 284 variants in neuroblastoma, 2,947 in ESP) and loss-of-function
variants in any of 924 genes listed in the Cancer Gene Census53, Familial Cancer
database54, or a list of DNA repair genes55 (86 neuroblastoma, 1,068 ESP). We then tested
each gene for significant enrichment of variants in the neuroblastoma compared to the ESP
cohort (1-tailed Fisher’s exact test, Supplementary Tables 7 and 8).

The germline ClinVar analysis uncovered four genes of significance driven by single
variants seen at greater frequency in neuroblastoma compared to ESP: CYP2D6, NOD2,
SLC34A3, and HPD. All of these variants are present at low frequency in an expanded
European American ESP cohort (rs5030865 in 1/8,524 chromosomes, rs104895438 in
5/8600, rs121918239 in 14/8514, and rs137852868 in 11/8600), suggesting they are benign
polymorphisms. Note that, while candidates detected by this approach are not significant
after correction for multiple testing, we believe there is sufficient biological rationale and
supporting evidence for validation in larger cohorts. We also looked for overlap with sites
recorded in COSMIC33. This analysis identified a TP53 variant associated with Li-Fraumeni
syndrome60.

Supplementary Material Supplementary tables 1-10 are provided as separate Microsoft
Excel files.

Supplementary Note: Additional verification data, significance analyses, and discussion of
complex rearrangements

Supplementary Table 1, Master data table: Clinical and molecular data for all neuroblastoma
cases including identifiers from other databases, sequencing technologies used, clinical and
biological covariates, and matrix of mutation calls

Supplementary Table 2, Coverage: Fraction of bases in each exon with sufficient coverage
for mutation detection

Supplementary Table 3, Full mutation list: All coding somatic mutations called in all cases

Supplementary Table 4, Mutation frequency correlates: Statistical comparison of mutation
frequency distributions (Kolmogorov-Smirnov) when comparing cases by clinical and
biological variables

Supplementary Table 5, Pathogens: Counts of sequencing reads in exome capture libraries
corresponding to known viruses

Supplementary Table 6, MutSig: Significance analysis of somatic mutation frequency in all
genes and a focused set of genes listed in the Catalogue of Somatic Mutations in Cancer

Supplementary Table 7, Gene set significance analysis: Full list of pathways, member genes,
mutated genes, and significance values as calculated by MutSig with and without
significantly mutated genes

Pugh et al. Page 11

Nat Genet. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Supplementary Table 8, Significance analysis of germline ClinVar variation: List of all
genes tested for enrichment in neuroblastoma of ClinVar variants

Supplementary Table 9, Significance analysis of germline loss-of-function variants in
Cancer Census, cancer syndrome, or DNA repair genes

Supplementary Table 10, Structural rearrangements: All structural variants detected in
neuroblastoma genomes or transcriptomes

Supplementary Table 11, Criteria used to identify somatic mutations in call files provided by
the Complete Genomics Cancer Sequencing service

Supplementary Table 12, Criteria used to identify copy number alterations in call files
provided by the Complete Genomics Cancer Sequencing service

Supplementary Table 13. Primer sequences used for DNA verification of structural variants
and gene fusions in WGS cases

Supplementary Table 14. Primer sequences used for RNA verification of structural variants
and gene fusions detected in WGS cases

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The investigators thank the Children’s Oncology Group for the collection and annotation of samples for this study
and all TARGET co-investigators for scientific support of this project. Funding was provided by National Institutes
of Health grants CA98543 and CA98413 to the Children’s Oncology Group, RC1MD004418 to the TARGET
consortium, CA124709 (J.M.M.) and CA060104 (R.C.C.), and NHGRI U54HG003067 (E.S.L., D.A., S.B.G., G.G.,
M.M.) as well as a contract from the National Cancer Institute, National Institute of Health
(HHSN261200800001E). Additional support included a Canadian Institutes of Health Research Fellowship (T.J.P.),
a Roman M. Babicki Fellowship in Medical Research at the University of British Columbia (O.M.), the Canada
Research Chair in Genome Science (M.A.M.), the Giulio D’Angio Endowed Chair (J.M.M.), the Alex’s Lemonade
Stand Foundation (J.M.M.), the Arms Wide Open Foundation (J.M.M.) and the Cookies for Kids Foundation
(J.M.M.). The authors would like to thank Elizabeth Nickerson, Sheridon Channer, Karen Novik, Cecelia Suragh,
and Robyn Roscoe for project management support. We also thank the staff of the Genome Sciences Centre
Biospecimen Core, Library Construction, Sequencing, and Bioinformatics teams, and the staff of the Broad Institute
Biological Samples, Genome Sequencing and Genetic Analysis Platforms for their expertise in genomic processing
of samples and generating the sequencing data used in this analysis.

References
1. Maris JM. Recent advances in neuroblastoma. N. Engl. J. Med. 2010; 362:2202–2211. [PubMed:

20558371]

2. Smith MA, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first
century. J. Clin. Oncol. 2010; 28:2625–2634. [PubMed: 20404250]

3. Matthay KK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy,
radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer
Group. N. Engl. J. Med. 1999; 341:1165–1173.

4. Yu AL, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma.
N. Engl. J. Med. 2010; 363:1324–1334. [PubMed: 20879881]

5. Oeffinger KC, et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J.
Med. 2006; 355:1572–1582. [PubMed: 17035650]

6. Trochet D, et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in
neuroblastoma. Am. J. Hum. Genet. 2004; 74:761–764. [PubMed: 15024693]

Pugh et al. Page 12

Nat Genet. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Mosse YP, et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am. J. Hum. Genet.
2004; 75:727–730. [PubMed: 15338462]

8. Mosse YP, et al. Identification of ALK as a major familial neuroblastoma predisposition gene.
Nature. 2008; 455:930–935. [PubMed: 18724359]

9. Janoueix-Lerosey I, et al. Somatic and germline activating mutations of the ALK kinase receptor in
neuroblastoma. Nature. 2008; 455:967–970. [PubMed: 18923523]

10. Diskin SJ, et al. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to
neuroblastoma. Nat. Genet. 2012; 44:1126–1130. [PubMed: 22941191]

11. Wang K, et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature. 2011;
469:216–220. [PubMed: 21124317]

12. Nguyễn LB, et al. Phenotype Restricted Genome-Wide Association Study Using a Gene-Centric
Approach Identifies Three Low-Risk Neuroblastoma Susceptibility Loci. PLoS Genet. 2011; 7

13. Diskin SJ, et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature. 2009;
459:987–991. [PubMed: 19536264]

14. Capasso M, et al. Common variations in BARD1 influence susceptibility to high-risk
neuroblastoma. Nat Genet. 2009; 41:718–723. [PubMed: 19412175]

15. Maris JM, et al. Chromosome 6p22 Locus Associated with Clinically Aggressive Neuroblastoma.
N Engl J Med. 2008; 358:2585–2593. [PubMed: 18463370]

16. Deyell RJ, Attiyeh EF. Advances in the understanding of constitutional and somatic genomic
alterations in neuroblastoma. Cancer Genetics. 2011; 204:113–121. [PubMed: 21504710]

17. Molenaar JJ, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in
neuritogenesis genes. Nature. 2012; 483:589–593. [PubMed: 22367537]

18. Cheung N-KV. Association of Age at Diagnosis and Genetic Mutations in Patients With
Neuroblastoma. JAMA: The Journal of the American Medical Association. 2012; 307:1062.
[PubMed: 22416102]

19. Sausen M, et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the
childhood cancer neuroblastoma. Nature Genetics. 2012 doi:10.1038/ng.2493.

20. Bentley DR, et al. Accurate whole human genome sequencing using reversible terminator
chemistry. Nature. 2008; 456:53–59. [PubMed: 18987734]

21. Drmanac R, et al. Human Genome Sequencing Using Unchained Base Reads on Self-Assembling
DNA Nanoarrays. Science. 2010; 327:78–81. [PubMed: 19892942]

22. Pugh TJ, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations.
Nature. 2012; 488:106–110. [PubMed: 22820256]

23. Wang L, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J.
Med. 2011; 365:2497–2506. [PubMed: 22150006]

24. Network TCGAR. Comprehensive genomic characterization of squamous cell lung cancers.
Nature. 2012; 489:519–525. [PubMed: 22960745]

25. Lee RS, et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers.
Journal of Clinical Investigation. 2012 doi:10.1172/JCI64400.

26. Banerji S, et al. Sequence analysis of mutations and translocations across breast cancer subtypes.
Nature. 2012; 486:405–409. [PubMed: 22722202]

27. Chapman MA, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;
471:467–472. [PubMed: 21430775]

28. Hodis E, et al. A landscape of driver mutations in melanoma. Cell. 2012; 150:251–263. [PubMed:
22817889]

29. Imielinski M, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel
sequencing. Cell. 2012; 150:1107–1120. [PubMed: 22980975]

30. Stransky N, et al. The Mutational Landscape of Head and Neck Squamous Cell Carcinoma.
Science. 2011; 333:1157–1160. [PubMed: 21798893]

31. Nikolaev SI, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2
mutations in melanoma. Nat. Genet. 2012; 44:133–139. [PubMed: 22197931]

32. Getz G, et al. Comment on ‘The Consensus Coding Sequences of Human Breast and Colorectal
Cancers’. Science. 2007; 317:1500. [PubMed: 17872428]

Pugh et al. Page 13

Nat Genet. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



33. Forbes SA, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic
Mutations in Cancer. Nucleic Acids Research. 2010; 39:D945–D950. [PubMed: 20952405]

34. Shi L, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the
development and validation of microarray-based predictive models. Nat. Biotechnol. 2010;
28:827–838. [PubMed: 20676074]

35. George RE, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma.
Nature. 2008; 455:975–978. [PubMed: 18923525]

36. Chen Y, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008; 455:971–974.
[PubMed: 18923524]

37. Bentires-Alj M, et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11
gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004; 64:8816–
8820. [PubMed: 15604238]

38. Tartaglia M, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause
Noonan syndrome. Nat Genet. 2001; 29:465–468. [PubMed: 11704759]

39. Tartaglia M, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia,
myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003; 34:148–150. [PubMed:
12717436]

40. Sarkozy A, et al. A novel PTPN11 gene mutation bridges Noonan syndrome, multiple lentigines/
LEOPARD syndrome and Noonan-like/multiple giant cell lesion syndrome. Eur. J. Hum. Genet.
2004; 12:1069–1072. [PubMed: 15470362]

41. De Brouwer S, et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in
tumors with MYCN amplification. Clin. Cancer Res. 2010; 16:4353–4362. [PubMed: 20719933]

42. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in
untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;
224:1121–1124. [PubMed: 6719137]

43. Adzhubei IA, et al. A method and server for predicting damaging missense mutations. Nat.
Methods. 2010; 7:248–249. [PubMed: 20354512]

44. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic
Acids Res. 2003; 31:3812–3814. [PubMed: 12824425]

45. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing
potential of sequence alterations. Nature Methods. 2010; 7:575–576. [PubMed: 20676075]

46. Tavtigian SV, et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with
classification of eight recurrent substitutions as neutral. J. Med. Genet. 2006; 43:295–305.
[PubMed: 16014699]

47. Marchler-Bauer A, et al. CDD: a Conserved Domain Database for the functional annotation of
proteins. Nucleic Acids Res. 2011; 39:D225–229. [PubMed: 21109532]

48. Love C, et al. The genetic landscape of mutations in Burkitt lymphoma. Nature Genetics. 2012 doi:
10.1038/ng.2468.

49. Subramanian A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. PNAS. 2005; 102:15545–15550. [PubMed: 16199517]

50. Barbosa-Morais NL, Carmo-Fonseca M, Aparício S. Systematic genome-wide annotation of
spliceosomal proteins reveals differential gene family expansion. Genome Res. 2006; 16:66–77.
[PubMed: 16344558]

51. Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and
genomics approaches. Nat. Rev. Mol. Cell Biol. 2009; 10:741–754. [PubMed: 19773805]

52. Gabut M, Chaudhry S, Blencowe BJ. SnapShot: The splicing regulatory machinery. Cell. 2008;
133:192.e1. [PubMed: 18394998]

53. Futreal PA, et al. A census of human cancer genes. Nat Rev Cancer. 2004; 4:177–183. [PubMed:
14993899]

54. Sijmons RH. Encyclopaedia of tumour-associated familial disorders. Part I: from AIMAH to
CHIME syndrome. Hered Cancer Clin Pract. 2008; 6:22–57. [PubMed: 19706204]

55. Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutat. Res. 2005; 577:275–
283. [PubMed: 15922366]

Pugh et al. Page 14

Nat Genet. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



56. Tennessen JA, et al. Evolution and Functional Impact of Rare Coding Variation from Deep
Sequencing of Human Exomes. Science. 2012; 337:64–69. [PubMed: 22604720]

57. Sodha N, Mantoni TS, Tavtigian SV, Eeles R, Garrett MD. Rare Germ Line CHEK2 Variants
Identified in Breast Cancer Families Encode Proteins That Show Impaired Activation. Cancer Res.
2006; 66:8966–8970. [PubMed: 16982735]

58. Lee SB, et al. Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni
Syndrome. Cancer Res. 2001; 61:8062–8067. [PubMed: 11719428]

59. Dong X, et al. Mutations in CHEK2 Associated with Prostate Cancer Risk. Am J Hum Genet.
2003; 72:270–280. [PubMed: 12533788]

60. Petitjean A, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor
phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 2007;
28:622–629. [PubMed: 17311302]

61. Birch JM, et al. Relative frequency and morphology of cancers in carriers of germline TP53
mutations. Oncogene. 2001; 20:4621–4628. [PubMed: 11498785]

62. Choi JM, et al. Analysis of PARK genes in a Korean cohort of early-onset Parkinson disease.
Neurogenetics. 2008; 9:263–269. [PubMed: 18704525]

63. Marongiu R, et al. PINK1 heterozygous rare variants: prevalence, significance and phenotypic
spectrum. Hum. Mutat. 2008; 29:565. [PubMed: 18330912]

64. Klein C, et al. PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset
parkinsonism. Eur. J. Hum. Genet. 2005; 13:1086–1093. [PubMed: 15970950]

65. Fredlund E, Ringnér M, Maris JM, Påhlman S. High Myc pathway activity and low stage of
neuronal differentiation associate with poor outcome in neuroblastoma. PNAS. 2008; 105:14094–
14099. [PubMed: 18780787]

66. Storlazzi CT, et al. Gene amplification as double minutes or homogeneously staining regions in
solid tumors: origin and structure. Genome Res. 2010; 20:1198–1206. [PubMed: 20631050]

67. Stephens PJ, et al. Massive Genomic Rearrangement Acquired in a Single Catastrophic Event
during Cancer Development. Cell. 2011; 144:27–40. [PubMed: 21215367]

68. Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome Res.
2009; 19:1639–1645. [PubMed: 19541911]

69. Gnirke A, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel
targeted sequencing. Nat Biotech. 2009; 27:182–189.

70. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009; 25:1754–1760. [PubMed: 19451168]

71. Goya R, et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of
tumors. Bioinformatics. 2010; 26:730–736. [PubMed: 20130035]

72. Carnevali P, et al. Computational techniques for human genome resequencing using mated gapped
reads. J. Comput. Biol. 2012; 19:279–292. [PubMed: 22175250]

73. Kostic AD, et al. PathSeq: software to identify or discover microbes by deep sequencing of human
tissue. Nature Biotechnology. 2011; 29:393–396.

74. Robertson G, et al. De novo assembly and analysis of RNA-seq data. Nat Meth. 2010; 7:909–912.

75. Lee W, et al. The mutation spectrum revealed by paired genome sequences from a lung cancer
patient. Nature. 2010; 465:473–477. [PubMed: 20505728]

76. Morin RD, et al. Somatic mutation of EZH2 (Y641) in Follicular and Diffuse Large B-cell
Lymphomas of Germinal Center Origin. Nat Genet. 2010; 42:181–185. [PubMed: 20081860]

77. Morin RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma.
Nature. 2011; 476:298–303. [PubMed: 21796119]

78. Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI Reference Sequences: current status, policy
and new initiatives. Nucleic Acids Res. 2009; 37:D32–36. [PubMed: 18927115]

79. Morozova O, et al. System-Level Analysis of Neuroblastoma Tumor–Initiating Cells Implicates
AURKB as a Novel Drug Target for Neuroblastoma. Clinical Cancer Research. 2010; 16:4572–
4582. [PubMed: 20651058]

80. Morin R, et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively
parallel short-read sequencing. BioTechniques. 2008; 45:81–94. [PubMed: 18611170]

Pugh et al. Page 15

Nat Genet. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



81. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–
2079. [PubMed: 19505943]

82. Robinson JT, et al. Integrative genomics viewer. Nat Biotech. 2011; 29:24–26.

83. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break
points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics.
2009; 25:2865–2871. [PubMed: 19561018]

84. Shah SP, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide
resolution. Nature. 2009; 461:809–813. [PubMed: 19812674]

85. Simpson JT, et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;
19:1117–1123. [PubMed: 19251739]

86. Pruitt KD, et al. The consensus coding sequence (CCDS) project: Identifying a common protein-
coding gene set for the human and mouse genomes. Genome Res. 2009; 19:1316–1323. [PubMed:
19498102]

87. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat. Methods. 2008; 5:621–628. [PubMed: 18516045]

88. Griffith M, et al. Alternative expression analysis by RNA sequencing. Nat Meth. 2010; 7:843–847.

89. Su AI, et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci.
U.S.A. 2002; 99:4465–4470. [PubMed: 11904358]

Pugh et al. Page 16

Nat Genet. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Landscape of genetic variation in neuroblastoma
Data tracks (rows) facilitate comparison of clinical and genomic data across neuroblastoma
cases (columns). Data source: sequencing technology used, purple = WES from WGA
(light) and native DNA (dark), green = Illumina WGS, yellow = Complete Genomics Inc.
WGS. Striped blocks indicate cases analyzed using two approaches. Clinical variables:
gender (male/female = blue/pink) and age (brown spectrum). Copy number alterations:
ploidy measured by flow cytometry (hyperdiploid = DNA index > 1) and clinically relevant
copy number alterations derived from sequence data. Significantly mutated: genes with
statistically significant mutation counts given the background mutation rate, gene size, and
expression in neuroblastoma. Germline: genes with significant numbers of germline
ClinVar or loss-of-function cancer gene variants in our cohort. DNA repair: Genes that may
be associated with increased mutation frequency in two apparently hyper-mutated tumors.
Predicted effects of somatic mutations are color-coded by the provided legend.
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Figure 2. Structural variation in neuroblastoma genomes
CIRCOS68 plots of cases with recurrent somatic alterations, labeled using TARGET
identifiers. Chromosomes are arranged end-to-end in the outer-most ring. Mutations in
significantly mutated genes are depicted in light blue outside of each diagram. The inside
ring shows somatic copy number gains and losses (high-level gains are red, low-level gains
are orange, losses are blue) detected by WGS. The innermost arcs depict genic structural
aberrations (gene fusions are orange, all others are black) detected by RNA-seq and
confirmed by local reassembly of WGS reads. Non-genic rearrangements are not shown.
The top five cases have mutations in significantly mutated genes ALK, MYCN, and NRAS.
The bottom three cases each have several rearrangements of NBAS, with expressed fusion
transcripts as annotated.
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Table 1

Genes with significant frequency of somatic mutation across 240 neuroblastomas

Gene Description Mutations Patients Unique
sites Missense

Loss of
function* q-value

Expressed in
neuroblastoma#

ALK
anaplastic lymphoma

receptor
tyrosine kinase

22 22 7 22 0 <1.8×10−7 Yes

PTPN11
protein tyrosine

phosphatase,
non-receptor type 11

7 7 6 7 0 1.8×10−5 Yes

ATRX
alpha thalassemia/mental
retardation syndrome X-

linked
6 6 6 3 3 0.031 Yes

OR5T1 olfactory receptor, family 5,
subfamily T, member 1 3 2 3 3 0 0.040 No

PDE6G
phosphodiesterase 6G,

cGMP-
specific, rod, gamma

2 2 2 2 0 0.052 No

MYCN

v-myc myelocytomatosis
viral

related oncogene,
neuroblastoma

4 4 1 0 0 0.093 Yes

NRAS
neuroblastoma RAS viral

(v-ras)
oncogene homolog

2 2 2 2 0 0.017
(COSMIC only) Yes

*
Nonsense, splice site, or frameshift

#
very low or absent mRNA expression in RNA-seq or microarray data sets
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Table 2

Candidate pathogenic germline variants in 222 neuroblastoma WES cases

Gene Subject
Identifier

Genome position
(build hg19)

cDNA
change

Protein
change

ALK PARVLK chr2:29432664 c.3824G>A p.Arg1275Gln

CHEK2 PAKXDZ chr22:29121242 c.433C>T p.Arg145Tro

CHEK2 PAPTFZ chr22:29121015 c.542G>A p.Arg181His

CHEK2 PARJMX chr22:29121018 c.539G>A p.Arg180His

PINK1 PANYBL chr1:20972133 c.1040T>C p.Leu437Pro

PINK1 PATINJ chr1:20971042 c.836G>A p.Arg279His

BARD1 PAHYWC chr2:215657051 c.334C>T p.Arg112*

BARD1 PATGWT chr2:215595215 c.1921C>T p.Arg641*

TP53 PAICGF chr17:7578194 c.655C>T p.Pro219Ser

PALB2 PAPZYZ chr16:23646182 c.1684+1C>A Splice at p.Gly562
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Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) http://target.cancer.gov

Broad Institute Cancer Genome Analysis
tools http://www.broadinstitute.org/cancer/cga

ClinVar http://www.ncbi.nlm.nih.gov/clinvar

Familial Cancer Database http://www.facd.info

Human DNA repair genes http://sciencepark.mdanderson.org/labs/wood/DNA_Repair_Genes.html

NHLBI Grand Opportunity Exome
Sequencing Project https://esp.gs.washington.edu/drupal/

International Agency for Research on Cancer
TP53 Database http://p53.iarc.fr

Complete Genomics Analysis Tools http://www.completegenomics.com/analysis-tools/cgatools/

ALEXA RNA-seq analysis tools http://www.alexaplatform.org/

Picard analysis tools http://picard.sourceforge.net

The R Project for Statistical Computing http://www.r-project.org/
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