128 research outputs found

    Universality of Phases in QCD and QCD-like Theories

    Full text link
    We argue that the whole or the part of the phase diagrams of QCD and QCD-like theories should be universal in the large-N_c limit through the orbifold equivalence. The whole phase diagrams, including the chiral phase transitions and the BEC-BCS crossover regions, are identical between SU(N_c) QCD at finite isospin chemical potential and SO(2N_c) and Sp(2N_c) gauge theories at finite baryon chemical potential. Outside the BEC-BCS crossover region in these theories, the phase diagrams are also identical to that of SU(N_c) QCD at finite baryon chemical potential. We give examples of the universality in some solvable cases: (i) QCD and QCD-like theories at asymptotically high density where the controlled weak-coupling calculations are possible, (ii) chiral random matrix theories of different universality classes, which are solvable large-N (large volume) matrix models of QCD. Our results strongly suggest that the chiral phase transition and the QCD critical point at finite baryon chemical potential can be studied using sign-free theories, such as QCD at finite isospin chemical potential, in lattice simulations.Comment: v1: 35 pages, 6 figures; v2: 37 pages, 6 figures, minor improvements, conclusion unchanged; v3: version published in JHE

    DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia

    Get PDF
    Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    eIF2B bodies and their role in the integrated stress response

    Get PDF
    Eukaryotic initiation factor 2 (eIF2) is a G protein comprised of 3 subunits (α, β and γ) that is critical for translation. It is tightly regulated in the integrated stress response (ISR) via the phosphorylation of its α subunit following the induction of cellular stress. In its phosphorylated form eIF2α inhibits the guanine nucleotide exchange factor (GEF) eukaryotic initiation factor 2B (eIF2B), resulting in the attenuation of global protein synthesis. eIF2B is a multisubunit protein comprised of regulatory and catalytic subunits. The catalytic subunits are responsible for the GEF activity whereas the regulatory subunits mediate inhibition by phosphorylated eIF2α. Through studying the localisation of eIF2B subunits, cytoplasmic eIF2B bodies were identified in mammalian cells. A relationship between body size and the eIF2B subunits localising to them exists; larger bodies contain all subunits and smaller bodies contain predominantly catalytic subunits. eIF2 localises to eIF2B bodies and moves through these bodies in a manner that correlates with eIF2B GEF activity. Upon the induction of cellular stress phosphorylated eIF2α localises predominately to larger eIF2B bodies which contain regulatory subunits and a decrease in the movement of eIF2 through these bodies is observed. Interestingly, drugs that inhibit the ISR can rescue the movement of eIF2 through these eIF2B bodies, in a manner that correlates to cellular levels of phosphorylated eIF2α. In contrast, smaller eIF2B bodies, which contain predominately catalytic subunits, show increased movement of eIF2 during cellular stress. This increase in movement is accompanied by an increase in the localisation of eIF2Bδ to these bodies, suggesting the formation of a novel eIF2B subcomplex. This response is mimicked by ISR-inhibiting drugs, providing insight into their potential mechanisms of action. This study provides the first evidence that the composition and function of mammalian eIF2B bodies is regulated by the ISR and the drugs that control it

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore