131 research outputs found

    A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles

    Get PDF
    The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Growth rate inhibition occurred in standard ISO tests (EC50 values of 15–200 mg Pt/L), but also in a double-vial setup, separating cells from PtNPs, thus demonstrating shading as an important artifact for PtNP toxicity. Negligible membrane damage, but substantial oxidative stress was detected at 0.1–80 mg Pt/L in both algal species using flow cytometry. PtNPs caused growth rate inhibition and oxidative stress in P. subcapitata, beyond what was accounted for by dissolved Pt, indicating NP-specific toxicity of PtNPs. Overall, P. subcapitata was found to be more sensitive toward PtNPs and higher body burdens were measured in this species, possibly due to a favored binding of Pt to the polysaccharide-rich cell wall of this algal species. This study highlights the importance of using multimethod approaches in nanoecotoxicological studies to elucidate toxicity mechanisms, influence of NP-interactions with media/organisms, and ultimately to identify artifacts and appropriate end points for NP-ecotoxicity testing

    GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs

    Full text link
    We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a unified framework for scalable computation and presentation of high-quality suboptimal solutions and bounds for a number of widely studied combinatorial optimisation problems. Efficient representation and applicability to large-scale graphs and complex networks are particularly considered in its design. The problems currently supported include maximum clique, graph colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics. The tool is designed with extensibility in mind, with the view of further problems and both new fast and high-performance heuristics to be added in the future. GraphCombEx has already been successfully used as a support tool in a number of recent research studies using combinatorial optimisation to analyse complex networks, indicating its promise as a research software tool

    Urachal Anomalies in Children: A Single Center Experience

    Get PDF
    The objective of this study is to define optimal diagnosis and treatment strategies for patients with urachal anomalies in the pediatric age group. The medical records of 21 children who had undergone surgery for urachal anomalies at Severance Hospital, Yonsei University College of Medicine from January 1990 to April 2005 were reviewed. The subjects included 14 males and 7 females (M:F 2:1). The four types of urachal anomalies confirmed were a urachal cyst in 10 patients (47.6%), a patent urachus in 6 (28.6%), a urachal sinus in 4 (19.0%) and a urachal diverticulum in 1 (4.8%) patient. The most common presenting complaint was umbilical discharge (n = 10, 40.0%), followed by abdominal mass (n = 9, 36.0%). Urachal anomalies were diagnosed by ultrasonography in 18 patients, and 7 of them were additionally examined by computed tomography. The remaining patients were diagnosed solely by surgical exploration. Excision was performed in all patients and was supplemented by partial cystectomy in three. Umbilical discharge was the most common clinical manifestation in our patients, suggesting that ultrasonography should be performed in patients with umbilical discharge to differentiate urachal anomalies. We found the most common anomaly to be the urachal cyst, and all patients were successfully treated by surgical excision

    Influence of wiring cost on the large-scale architecture of human cortical connectivity

    Get PDF
    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain

    Ageing vision and falls: a review

    Get PDF
    Background: Falls are the leading cause of accidental injury and death among older adults. One of three adults over the age of 65 years falls annually. As the size of elderly population increases, falls become a major concern for public health and there is a pressing need to understand the causes of falls thoroughly. Main body of the abstract: While it is well documented that visual functions such as visual acuity, contrast sensitivity, and stereo acuity are correlated with fall risks, little attention has been paid to the relationship between falls and the ability of the visual system to perceive motion in the environment. The omission of visual motion perception in the literature is a critical gap because it is an essential function in maintaining balance. In the present article, we first review existing studies regarding visual risk factors for falls and the effect of ageing vision on falls. We then present a group of phenomena such as vection and sensory reweighting that provide information on how visual motion signals are used to maintain balance. Conclusion: We suggest that the current list of visual risk factors for falls should be elaborated by taking into account the relationship between visual motion perception and balance control

    Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk

    Get PDF
    An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition

    Bioinspired approaches for toughening of fibre reinforced polymer composites

    Get PDF
    In Nature, there are a large range of tough, strong, lightweight and multifunctional structures that can be an inspiration to better performingmaterials. Thiswork presents a review of structures found in Nature, frombiological ceramics and ceramics composites, biological polymers and polymers composites, biological cellular materials, biological elastomers to functional biological materials, and their main tougheningmechanisms, envisaging potential mimicking approaches that can be applied in advanced continuous fibre reinforced polymer (FRP) composite structures. For this, themost common engineering compositemanufacturing processes and current composite damage mitigation approaches are analysed. This aims at establishing the constraints of biomimetic approaches development as these bioinspired structures are to be manufactured by composite technologies. Combining both Nature approaches and engineering composites developments is a route for the design and manufacturing of high mechanical performance and multifunctional composite structures, therefore new bioinspired solutions are proposed.This research was funded by the project “IAMAT—Introduction of advanced materials technologies into new product development for the mobility industries”, with reference MITP-TB/PFM/0005/2013, under the MIT-Portugal program and in the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, exclusively financed by FCT - Fundação para a Ciência e Tecnologia

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe
    corecore